라틴어 문장 검색

Et si sexta ducatur tangens eq tangentibus KI, MI occurrens in e & q, rectangulum KQ × ME aequabitur rectangulo Kq × Me, eritq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 93:2)
eorum complementa PQG, abG aequantur, suntq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 109:8)
AEquantur itaq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 109:11)
Angulis insuper FaG, FbH, FcI aequantur fAg, fBh, fCi per constructionem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 120:4)
& angulum V (primam medii motus aequationem) ad angulum Y (aequationem maximam primam) ut est sinus anguli T duplicati ad radium; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:9)
duobus minor, aequalem cape angulum BHP (motum medium aequatum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:12)
Invento autem angulo motus medii aequati BHP, angulus veri motus HSP & distantia SP in promptu sunt per methodum notissimam Dris.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 29:15)
Iisdem positis, dico quod area figurae DES, radio indefinito SD descripta, aequalis sit areae quam corpus, radio dimidium lateris recti figurae DES aequante, circa centrum S uniformiter gyrando, eodem tempore describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 18:1)
In duplicata ratione hujus velocitatis ad uniformem in circulo velocitatem, qua corpus ad intervallum datum SG circa centrum S revolvi posset, cape CA ad ½AS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:2)
Tum centro S, intervallo aequante dimidium lateris recti, describatur circulus HKk, & ad corporis ascendentis vel descendentis loca duo quaevis G, C, erigantur perpendicula GI, CD occurrentia Conicae Sectioni vel circulo in I ac D. Dein junctis SI, SD, fiant segmentis SEIS, SEDS Sectores HSK, HSk aequales, & per Theorema XI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 31:6)
) aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 37:5)
& si ea sit vis centripeta, ut area ABGE latus quadratum sit ut descendentis velocitas, erit area ipsa in duplicata ratione velocitatis, id est, si pro velocitatibus in D & E scribantur V & V + I, erit area ABFD ut V^2, & area ABGE ut V^2 + 2VI + I^2, & divisim area DFGE ut 2VI + I^2, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 42:3)
erunt (ex aequo) areae totae ABFD, PQRD ad invicem ut semisses totarum velocitatum, & propterea (ob aequalitatem velocitatum) aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:12)
Quoniam distantiae CD, CI aequantur, erunt vires centripetae in D & I aequales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 4:7)
Unde cum YX × XC sit ad A × KN in duplicata ratione YC ad KC, erit rectang.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 10:15)

SEARCH

MENU NAVIGATION