라틴어 문장 검색

Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:1)
Sit O punctum in quo RQ bisecatur, & erit PO ordinatim applicata ad diametrum illam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 4:6)
Produc PO ad K ut sit OK aequalis PO, & erit OK ordinatim applicata ad contrarias partes diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 4:7)
Quare applicando terminos prioris propositionis ad terminos correspondentes hujus, erit b[r] ad bd ut PR ad PT.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 12:8)
Biseca BF in G, & acta AG diameter erit ad quam BG & FG ordinatim applicantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 22:4)
E punctis datis junge tria quaevis A, B, C, & circum duo eorum B, C ceu polos, rotando angulos magnitudine datos ABC, ACB, applicentur crura BA, CA primo ad punctum D deinde ad punctum P, & notentur puncta M, N in quibus altera crura BL, CL casu utroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 43:1)
& applicando constructionem praecedentem ad hunc casum solvetur Problema.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 110:4)
÷ 4AS, & applicatis terminis omnibus ad 3PO, ductisq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 4:27)
Applicando arearum A & APS semidifferentiam ½APS - ½A vel ½A - ½APS ad lineam SN, quae ab umbilico S in tangentem PT perpendicularis est, orietur longitudo PQ.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 28:7)
Super diametro AS (distantia corporis a centro sub initio) describe semicirculum ADS, ut & huic aequalem semicirculum OKH circa centrum S. De corporis loco quovis C erige ordinatim applicatam CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:1)
incrementa illa (ob aequalitatem temporum nascentium) ut vires generatrices, id est ut ordinatim applicatae DF, DR, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 44:10)
C & intervallo Ck describatur circulus ke occurrens rectae PD in e, & erigantur curvarum ALMm, BFGg, abzv, dcxw ordinatim applicatae em, eg, ev, ew.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 17:6)
Centro C intervallo CA describatur Globus exterior ABD, & intra hunc globum Rota, cujus diameter sit AO, describantur duae semicycloides AQ, AS, quae globum interiorem tangant in Q & S & globo exteriori occurrant in A. A puncto illo A, filo APT longitudinem AR aequante, pendeat corpus T, & ita intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem illam APS, versus quam peragitur motus, & circum eam ceu obstaculum flectatur, parteq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:3)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)
Igitur in Horologiis, si vires a Machina in Pendulum ad motum conservandum impressae ita cum vi gravitatis componi possint, ut vis tota deorsum semper sit ut linea quae oritur applicando rectangulum sub arcu TR & radio AR, ad sinum TN, Oscillationes omnes erunt Isochronae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 47:2)

SEARCH

MENU NAVIGATION