라틴어 문장 검색

Sunt igitur duae, id est viij et xvi quae considerandae sunt, quemadmodum ipsae sibi respondeant.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 13:6)
His vero contra se positis, id est primo et incomposito et secundo et composito, et naturali diversitate disiunctis alius in medio consideratur, qui ipse quidem compositus sit et secundus et alterius recipiens mensionem atque ideo et partis alieni vocabuli capax, sed cum fuerit ad alium eiusdem generis numerum comparatus, nulla cum eo communi mensura coniungitur;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:1)
His igitur ita dispositis considerandum, primus numerus quem eorum, qui sunt in ordine positi, primum metiri possit.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 1:4)
Omnis quippe inaequalitas aut in maioribus aut in minoribus consideratur.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:3)
Dicendum vero est, si quis secundam speciem superparticularis numeri considerare desideret, id est sesquitertiam, quali ratione repperiet.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 6:1)
Si igitur quinarii numeri ad ternarium comparatio consideretur, erit superpartiens ille, qui vocatur superbipartiens;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 5:1)
Quod in senario quoque convenit considerari.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:7)
tetragonos quoque ad eundem modum considerari manifestum est. Nam quod eorum compositio et coniunctio ex inparibus fit, inmutabili eos naturae pronuntiabo coniunctos.
(보이티우스, De Arithmetica, Liber secundus, Quod principaliter eiusdem quidem sit substantiae unitas, secundo vero loco inpares numeri, tertio quadrati, et quod principaliter dualitas alterius sit substantiae, secundo vero loco pares numeri, tertio parte altera longiores 1:3)
Sin vero quattuor contra duo compares, hic quoque dupla proportio est. Quos tres terminos si continue consideres, ex duabus proportionibus fit proportionalitas et est proportionalitas unum ad duo et duo ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:10)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
Qualitas autem proportionis eadem non erit, quamvis sint aequis termini differentiis distributi.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:3)
Quod si conversim ponantur, ut non eisdem differentiis eadem qualitas proportionis eveniat, geometrica talis proportionalitas, non arithmetica nominatur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:4)
Harum vero medietatum, id est arithmeticae atque armonicae, geometrica proportionalitas media esse notata est, quae vel in maioribus vel in minoribus terminis aequas numerorum qualitates in proportionalitate custodit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:6)
Considerandum forsitan videatur, cur hanc armonicam medietatem vocemus.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:1)
Quarta vero, quae in ordine decima est, consideratur in tribus terminis, cum tali proportione medius terminus ad parvissimum comparatur, quali extremorum differentia contra maiorum terminorum differentiam proportione coniungitur, ut sunt iij v viij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:12)

SEARCH

MENU NAVIGATION