라틴어 문장 검색

per centrum O agatur recta KOL filis perpendiculariter occurrens in K & L, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:2)
O & intervallorum OK, OL majore OL describatur circulus occurrens filo MA in D:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:3)
Quoniam nihil refert utrum filorum puncta K, L, D affixa sint vel non affixa ad planum rotae, pondera idem valebunt ac si suspenderentur a punctis K & L vel D & L. Ponderis autem A exponatur vis tota per lineam AD, & haec resolvetur in vires AC, CD, quarum AC trahendo radium OD directe a centro nihil valet ad movendam rotam;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:5)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
si pondus p sit ad pondus A in ratione quae componitur ex ratione reciproca minimarum distantiarum filorum suorum AM, pN a centro rotae, & ratione directa pH ad pN;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:10)
Pendeant corpora A, B filis parallelis AC, BD a centris C, D. His centris & intervallis describantur semicirculi EAF, GBH radijs CA, DB bisecti.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:8)
Occurrat enim filum PT tum Cycloidi QRS in T, tum circulo QOS in V, agaturq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:1)
& ad fili partem rectam PT, e punctis extremis P ac T, erigantur perpendicula PB, TW, occurrentia rectae CV in B & W. Patet enim ex genesi Cycloidis, quod perpendicula illa PB, TW, abscindent de CV longitudines VB, VW rotarum diametris OA, OR aequales, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:3)
longitudo PT aequatur Cycloidis arcui PS, & filum totum APT aequatur Cycloidis arcui dimidio APS, hoc est (per Corollar. 2. Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:7)
Et propterea vicissim si filum manet semper aequale longitudini AR movebitur punctum T in Cycloide QRS. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:9)
Filum AR aequatur Cycloidis arcui dimidio APS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 26:2)
) resolvitur in partes CX, TX, quarum CX impellendo corpus directe a P distendit filum PT & per cujus resistentiam tota cessat, nullum alium edens effectum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:3)
Hinc si corpus T filo rectilineo AT a centro A pendens, describat arcum circularem STRQ, & interea urgeatur secundum lineas parallelas deorsum a vi aliqua, quae sit ad vim uniformem gravitatis, ut arcus TR ad ejus sinum TN:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 46:2)
deinde ex his contiguis factis conflari annulum fluidum, rotundum ac corpori S concentricum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 70:3)
& singulae annuli partes, motus suos omnes ad legem corporis P peragendo, propius accedent ad corpus S, & celerius movebuntur in Conjunctione & Oppositione ipsarum & corporis Q, quam in Quadraturis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 70:4)

SEARCH

MENU NAVIGATION