라틴어 문장 검색

Duae enim lineae rectae spatium non continent.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:3)
Et omnis triangularis figura vel tetragoni vel pentagoni vel exagoni vel cuiuslibet, qui pluribus angulis continetur, si a medietate per singulos angulos lineae producantur, tot eum dividunt trianguli, quot ipsam figuram angulos habere contigerit.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:4)
Nam si cunctorum mater est numerorum, quicquid in his, quae ab ea nascuntur, numeris invenitur, necesse est ut ipsa naturali quadam potestate contineat.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:2)
tertii vero, id est denarii, quaternarius latus continet;
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:7)
Et senarium his adiecta ternarii quantitate produximus, cuius latus soli tres continent;
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:9)
et idem in aliis cunctis, quot unitates habentem numerum superioribus adgregabis, tot unitatibus eius latera continebuntur.
(보이티우스, De Arithmetica, Liber secundus, De generatione triangulorum numerorum 3:10)
secundus vero, qui actu primus est, id est quattuor, duobus per latera positis continetur;
(보이티우스, De Arithmetica, Liber secundus, De eorum lateribus 1:3)
Et in novenario, quoniam tribus numeris procreatur, latus ternario continetur, atque idem in aliis videre licet.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:10)
Pentagonus vero numerus est, qui ipse quidem in latitudinem secundum unitatem descriptis quinque angulis continetur.
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:1)
Exagoni autem, qui sex angulis, et eptagoni, qui vij rursus lateribus continentur, secundum hunc modum eorum laterum augmenta succrescunt.
(보이티우스, De Arithmetica, Liber secundus, De exagonis eorumque generationibus. 1:1)
Similiter autem licebit et aliarum formarum, quae pluribus angulis continentur quantitates adscribere.
(보이티우스, De Arithmetica, Liber secundus, Descriptio figuratorum numerorum in ordine 1:1)
Idem si a tetragona basi proficiscatur et ad unum verticem eius lineae dirigantur, erit pyramis quattuor triangulorum per latera, uno tantum tetragono in basi posito, super quam ipsa figura fundata est. Et si a pentagono surgant v lineae, quinque rursus pyramis triangulis continebitur, et si ab exagono, sex triangulis nihilominus;
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:1)
et quantoscunque angulos habuerit figura, super quam pyramis residet, tot ipsa per latera triangulis continetur, ut ex subiectis descriptionibus palam est.
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:2)
At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)

SEARCH

MENU NAVIGATION