라틴어 문장 검색

directe ut 1 ÷ A^{11/4} seu ut A^¼ ÷ A^3 erit n aequalis ¼, & 180 ÷ [sqrt]n gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:30)
& si resistentiae sint ut D^n & E^n, spatia quibus amittent partes motuum proportionales totis, erunt ut D^{3 - n} & E^{3 - n}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 19:6)
& fiet GD aequalis c - {m ÷ n}a - bb ÷ a + {m ÷ n}o - {bb ÷ aa}o - {bb ÷ a^3}o^2 - {bb ÷ a^4}o^3 &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:7)
ad T^n ut -Fq. ad -nT^{n - 1}, seu Gq. ad T^{n - 1} ut Fq. ad nT^{n - 1}, & vicissim Gq. ad Fq. ut T^{n - 1} ad nT^{n - 1} id est ut 1 ad n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:13)
area AHIKL ut {1 ÷ PA^{n - 1}} - {1 ÷ PH^{n - 1}};
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 28:3)
erit attractio corpusculi P in circulum ut {1 ÷ PA^{n - 2}} - {PA ÷ PH^{n - 1}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 28:4)
Et generaliter si ponatur A^{m ÷ n} aequalem B, erit A^m aequale B^n, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 30:5)
reliquae partes dextra ter ac sinistra ter dividendae sunt aequaliter, quae sunt ad orientem, in quibus litterae L M, et ab occidente, in quibus sunt litterae N et O. ab M ad O et ab L ad N perducendae sunt lineae decusatim.
(비트루비우스 폴리오, 건축술에 관하여, LIBER PRIMUS, 6장57)
× IS} ÷ {IE × IE^n}, quarum ratio ad invicem est ut PS × IE × IE^n ad IS × PE × PE^n.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 103:7)
Hujus seriei terminus secundus {d ÷ e}O - {nbb ÷ A^{n+1}}O usurpandus est pro Qo, tertius {{nn + n} ÷ 2A^{n+2}}bbO^2 pro Ro^2, quartus {{n^3 + 3nn + 2n} ÷ 6A^{n+3}}bbO^3 pro So^3.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 86:1)
Et universaliter, si vires punctorum ad distantias D sint reciproce ut distantiarum dignitas quaelibet D^n, hoc est, si sit FK ut 1 ÷ D^n, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 28:2)
× SP^n} sive ut ½nVQ ÷ {PQ × SP^n × SQ}, adeoque ut ½OS ÷ {OP × SP^{n + 1}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 21:4)
A^m B^n momentum est momentum ipsius A^m ductum in B^n, una cum momento ipsius B^n ducto in A^m, id est maA^{m - 1} + nbB^{n - 1}; idq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 31:3)
attractio corpusculi P in planum totum infinitum erit reciproce ut PA^{n - 2}, propterea quod terminus alter PA ÷ PH^{n - 1} evanescet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 29:3)
produc tum AB ad G ut sit BG ad CE ut M - N ad N, tum AD ad H ut sit AH aequalis AG, tum etiam DF ad K ut sit DK ad DH ut N ad M. Junge KB, & centro D intervallo DH describe circulum occurrentem KB productae in L, ipsiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 26:4)

SEARCH

MENU NAVIGATION