라틴어 문장 검색

Illud igitur perspiciendum est, quod, si idem tetragoni et parte altera longiores disponantur, ita ut alternatim sibi permixti sint, tanta in his est coniunctio, ut alias sibi in eisdem proportionibus communicent, discrepent autem differentiis, alias vero differentiis pares sint, proportionibus distent.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:1)
In sequentibus etiam eadem ratio speculabitur et semper alternatim, nunc quidem eaedem proportiones, aliae differentiae sunt, nunc autem ordine permutato eisdem differentiis aliae proportiones, semperque, in quibus differunt, secundum naturalis numeri ordines tetragoni et parte altera longiores sese superabunt, tantum quod geminatis summulis naturalis numeri fit progressio.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:13)
Poterimus autem hanc in duobus altrinsecus positis terminis vel paribus vel inparibus permutare ita, ut, cum arithmeticam ponimus medietatem, differentiarum tantum ratio aequalitasque servetur, cum vero geometricam, rata se proportionum iunctura custodiat, sin autem armonica fiat, differentiarum comparatio ab terminorum proportione non discrepet.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:3)
Quarta vero, quae in ordine decima est, consideratur in tribus terminis, cum tali proportione medius terminus ad parvissimum comparatur, quali extremorum differentia contra maiorum terminorum differentiam proportione coniungitur, ut sunt iij v viij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:12)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)
Namque si ponantur ij iiij viij xvj xxxij lxiiij, inter hos omnes dupla proportio est. Apparet etiam haec proportionalitas in binis proportionibus ab unitate alternatim parte altera longioribus quadratisque dispositis a prima multiplicitatis habitudine, id est a duplici per cunctas superparticularis habitudines proportionesque discurrens;
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:7)
Atque hoc in cunctis triplicibus invenitur, ut extremus eiusdem proportionis numerus tantos ante se praecedentes habeat, quanto primus eorum ab unitate discesserit et qui tot super se eiusdem proportionis habuerit numeros, quotus ab unitate primus eorum iacet.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:7)
Sunt autem, quae isdem columnis inponuntur, capitulorum genera variis vocabulis nominata, quorum nec proprietates symmetriarum nec columnarum genus aliud nominare possumus, sed ipsorum vocabula traducta et commutata ex corinthiis et pulvinatis et doricis videmus, quorum symmetriae sunt in novarum scalpturarum translatae subtilitatem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUARTUS, 1장39)
Proportio est duorum terminorum ad se invicem quaedam habitudo et quasi quodammodo continentia, quorum compositio quod efficit, proportionale est. Ex iunctis enim proportionibus proportionalitas fit. In tribus autem terminis minima proportionalitas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:7)
Hic enim aequa semper proportio custoditur, numeri quantitas multitudoque neglegitur, contrarie quam in arithmetica medietate, ut sunt j ij iiij viij xvj xxxij lxiiij vel in tripla proportione j iij viiij xxvij lxxxj vel si quadrupla vel si quincupla vel si in quamlibet multiplicitatem numerorum sit constituta distensio.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:2)
Secundus vero, qui est viiij, habet ad se duodenarium numerum sesquitertium, duodenarius autem, quoniam habet tertiam partem, in sesquitertia proportione comparatur ad eum numerus xvj, qui tertiae partis sectione solutus est xxvij autem, quoniam tertius est triplex, habet ad se sesquitertium xxxvj et hic rursus ad xlviij eadem proportione comparatur.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 9:5)
quae supra erunt, reliqua habebunt ad eundem modum symmetrias, abacus autem erit longus et latus, quam crassa columna est ima adiecta parte VIIII, uti, quo minus habuerit altior columna contractum, eo ne minus habeat capitulum suae symmetriae proiecturam et in latitudine suae partis adiectionem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER TERTIUS, 5장34)
Horum igitur si primum compares primo, dupli quantitas invenitur, quae est prima multiplicitatis species, si vero secundum secundo hemioliae quantitatis habitudo producitur, si tertium tertio sesquitertia proportio procreatur, si quartum quarto, sesquiquarta, et si quintum quinto, sesquiquinta, et hinc superparticularium normam in quamvis longissimum spatium progrediens integram inoffensamque repperies, ita ut in prima dupli proportione unitatis solius sit differentia, duo namque ab uno sola semper discrepant unitate.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:1)
cum ergo constituta symmetriarum ratio fuerit et commensus ratiocinationibus explicati, tum etiam acuminis est proprium providere ad naturam loci aut usum aut speciem adiectionibus temperaturas efficere, cum de symmetria sit detractum aut adiectum, uti id videatur recte esse formatum in aspectuque nihil desideretur.
(비트루비우스 폴리오, 건축술에 관하여, LIBER SEXTUS, 2장2)
De ipsis autem aedibus sacris faciundis et de earum symmetriis in tertio et quarto volumine reddam rationes, quia in secundo visum est mihi primum de materiae copiis, quae in aedificiis sunt parandae, quibus sint virtutibus et quem habeant usum, exponere, commensus aedificiorum et ordines et genera singula symmetriarum peragere et in singulis voluminibus explicare.
(비트루비우스 폴리오, 건축술에 관하여, LIBER PRIMUS, 7장14)

SEARCH

MENU NAVIGATION