라틴어 문장 검색

ita X sonitus propter translationes in generibus efficiunt triplicem modulationum varietatem.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 4장33)
Triangulus in tres triangulos divisus.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:9)
Et ad faciendas quidem pyramidas a triangulo ipsi nobis trianguli componendi sunt;
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:5)
Cum autem [xi]O sit ad SO ut 3 ad 1 & EO ad YO prope in eadem ratione, erit SY ipsi EB parallela quamproximè, & propterea triangulum SEB, triangulo YEB quamproximè aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:3)
Transit autem haec figura per punctum P, eo quod triangulum PSH simile sit triangulo psh;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 23:7)
Ideoque cum triangulum ASE sit ad triangulum ASC in eadem ratione, erit area tota ASEY ad aream totam ASCY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:2)
Unde cùm impressiones sunt ut contiguae superficies & harum translationes ab invicem, erunt translationes inversè ut superficies, hoc est inversè ut superficierum distantiae ab axe.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:6)
quadratus in quattuor triangulos divisus, pentagonus in v triangulos divisus, exagonus in sex triangulos divisus.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:6)
Sunt autem differentiae motuum angularium circa axem ut hae translationes applicatae ad distantias, sive ut translationes directè & distantiae inversè;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:7)
Sunt autem differentiae motuum angularium circa axem ut hae translationes applicatae ad distantias, sive ut translationes directè & distantiae inversè;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 16:10)
Unde si ad aream ASEY addatur triangulum EYB, & de summa auferatur triangulum SEB, manebit area ASBY areae ASEY aequalis quamproximè, atque adeo ad aream ASCY ut AE ad AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:4)
Omnes enim tetragoni, qui sub triangulis sunt naturali ordinatione dispositi, ex superioribus triangulis procreantur illorumque collectione quadrati figura componitur.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:2)
Ex quaternario quoque et senario denarius triangulus nascitur, et ad eundem ordinem cuncta triangulorum ratio constabit.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:3)
Motus totius idem est cum summa motuum partium, hoc est, translatio totius de ipsius loco eadem cum summa translationum partium de locis suis, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 정의 32:8)
Jungatur AN, & ob aequales MS & SP, MN & NP, MA & AO, parallelae erunt rectae AN & OP, & inde triangulum SAN rectangulum erit ad A & simile triangulis aequalibus SMN, SPN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:2)

SEARCH

MENU NAVIGATION