라틴어 문장 검색

exponi potest tempus per aream ABGD, & spatium eo tempore descriptum per lineam AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:4)
Nam si area illa per motum puncti D augeatur uniformiter ad modum temporis, decrescet recta DC in ratione Geometrica ad modum velocitatis, & partes rectae AC aequalibus temporibus descriptae decrescent in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 13:5)
erunt areae ABqK, KqrL, LrsM, MstN &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:15)
Est autem area ABqK (per Corol. 3. Lem. VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:18)
& Lem. VIII. Lib. I.) ad aream Bkq ut Kq ad ½kq seu AC ad ½AK, hoc est ut vis gravitatis ad resistentiam in medio temporis primi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:19)
Et simili argumento areae qKLr, rLMs, sMNt, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:20)
sunt ad areas qklr, rlms, smnt &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:21)
Proinde cum areae aequales BAKq, qKLr, rLMs, sMNt, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:23)
sint viribus grauitatis analogae, erunt areae Bkq, qklr, rlms, smnt, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:24)
Sumantur analogarum summae, & erunt areae Bkq, Blr, Bms, Bnt, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:27)
necnon areae ABqK, ABrL, ABsM, ABtN, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:29)
RV aequalis DR × QB ÷ N, & Rr (id est RV - Vr seu {DR × QB - tGT} ÷ N) aequalis {DR × AB - RDGT} ÷ N. Exponatur jam tempus per aream RDGT, & (per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:2)
Quo demonstrato, consequens est etiam ut areae his lineis descriptae sint in progressione consimili cum spatiis quae velocitatibus describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:14)
& longitudines descriptae per areas Kl, Lm, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:16)
velocitas in fine temporis exponetur per ordinatam DG, & spatium totum descriptum per aream Hyperbolicam adjacentem ABGD;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 5:3)

SEARCH

MENU NAVIGATION