라틴어 문장 검색

Accinctaeque mulieres ciliciis sub mammis per vias confluebant; sed et virgines, quae conclusae erant, aliae quidem procurrebant ad ianuas, aliae autem ad muros, quaedam vero per fenestras aspiciebant;
(불가타 성경, 마카베오기 하권, 3장19)
Ad ultimum igitur malam reversionem sortitus est; conclusus apud Aretam Arabum tyrannum, fugiens de civitate in civitatem, expulsus ab omnibus, odiosus ut refuga legum et exsecrabilis ut patriae et civium carnifex in Aegyptum extrusus est.
(불가타 성경, 마카베오기 하권, 5장8)
Pecunias autem eorum, qui ad emptionem illorum advenerant, abstulerunt et, cum persecuti eos fuissent satis longe, reversi sunt hora conclusi;
(불가타 성경, 마카베오기 하권, 8장25)
Et, cum conclusus esset locus, discessit quasi iterum reversurus et universam Ioppitarum civitatem eradicaturus.
(불가타 성경, 마카베오기 하권, 12장7)
Enuntiavit autem mysteria hostibus Rhodocus quidam de Iudaico exercitu; qui requisitus, comprehensus est et conclusus.
(불가타 성경, 마카베오기 하권, 13장21)
In eo namque ordine numerorum, ubi extremus terminus lxxiiij pluralitate concluditur, sola invenitur una medietas, id est viij, quam si octies id est in semet ipsum multiplices lxiiij explicabit, atque idem reddent illi, qui super hanc meidetatem sunt, ut dudum hi, qui super duas positi, faciabant.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:2)
Inpariter par numerus est ex utrisque confectus et medietatis loco gemina extremitate concluditur, ut, quo ab utroque discrepet, eadem ad alterutrum congnatione iugatur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:1)
Habet enim octonarius partem mediam, id est iiij, habet et quartam, id est ij, et octavam, id est j quae cunctae in unum redactae vij colligunt, minorem scilicet summam toto corpore concludentes.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:11)
Quoniam autem naturaliter et secundum propriam ordinis consequentiam multiplicem inaequalitatis speciem cunctis praeposuimus primamque speciem esse monstravimus, licet hoc nobis posterioris operis ordine clarescat, hic quoque perstringentes id, quod proposuimus, planissime breviterque doceamus.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:1)
Superficies quoque numerorum, cum ipsa solidum corpus non sit, additi tamen latitudini solidi corporis caput est. Hoc autem planius his exemplis liquebit.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:2)
Hi vero idcirco a ternario numero inchoant, quod latitudinis et superficiei solus ternarius principium est. In geometria quoque idem planius invenitur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:2)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)
Sin vero his sequentes novem adiecero, fiet mihi quattuordecim numerorum forma pyramidis, quae per latera tribus unitatibus concludatur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:8)
Omnes enim planae figurae, quae nulla altitudine crescunt, una tantum medietate geometrica continuantur;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:2)
Recte igitur et planae figurae duobus intervallis et solidae tribus contineri dicuntur.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:8)

SEARCH

MENU NAVIGATION