- 문장 검색

라틴어 문장 검색

hoc est si capiantur datae quantitates F, G in ea ratione ad invicem quam habet angulus VCP ad angulum VCp, ut Gq. - Fq. ad Fq. Et propterea, si centro C intervallo quovis CP vel Cp describatur Sector circularis aequalis areae toti VPC, quam corpus P tempore quovis in orbe immobili revolvens radio ad centrum ducto descripsit, differentia virium, quibus corpus P in orbe immobili & corpus p in orbe mobili revolvuntur, erit ad vim centripetam qua corpus aliquod radio ad centrum ducto Sectorem illum, eodem tempore quo descripta sit area VPC, uniformiter describere potuisset, ut Gq. - Fq. ad Fq. Namq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 7:3)
erit vis qua corpus in Ellipsi mobili revolvi potest, ut Fq. ÷ Aq. + {RGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:5)
) differentia virium quibus corpus P in Ellipsi immota VPK, & corpus p in Ellipsi mobili vpk revolvuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:17)
qua corpus in Ellipsi mobili vpk iisdem temporibus revolvi possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 8:30)
similis, aequalis & concentrica ponatur Ellipsis mobilis vpk, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 9:3)
vires quibus corpora in Ellipsi immobili & mobili temporibus aequalibus revolvi possunt, erunt ut Fq.A ÷ T cub. & Fq.A ÷ T cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 9:6)
Problema solvitur Arithmetice faciendo ut orbis, quem corpus in Ellipsi mobili, ut in Propositionis superioris Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 16:1)
corpus aliud in Ellipsi mobili, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 17:32)
Si rota globo concavo ad rectos angulos intrinsecus insistat & revolvendo progrediatur in circulo maximo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 13:1)
Concipe hanc Rotam pergere in circulo maximo ABL ab A per B versus L, & inter eundum ita revolvi ut arcus AB, PB sibi invicem semper aequentur, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:2)
punctum illud P in Perimetro rotae datum interea describere viam curvilineam AP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:3)
Sit autem AP via tota curvilinea descripta ex quo Rota globum tetigit in A, & erit viae hujus longitudo AP ad duplum sinum versum arcus ½PB, ut 2CE ad CB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:4)
Nam recta CE (si opus est producta) occurrat Rotae in V, junganturq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:5)
Centro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotae perimetrum Bp in o & viam curvilineam AP in m, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:9)
BV - VP sinus versus ejusdem anguli, & propterea in hac Rota cujus radius est ½BV, erit BV - VP duplus sinus versus arcus ½BP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:11)

SEARCH

MENU NAVIGATION