라틴어 문장 검색

Si autem inpares fuerint dispositiones, unus medius terminus invenitur, atque ipse sibi propria multiplicatione respondet.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:1)
In eo namque ordine numerorum, ubi extremus terminus lxxiiij pluralitate concluditur, sola invenitur una medietas, id est viij, quam si octies id est in semet ipsum multiplices lxiiij explicabit, atque idem reddent illi, qui super hanc meidetatem sunt, ut dudum hi, qui super duas positi, faciabant.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:2)
Si vero fuerint duae medietates iunctae, ipsoae utraeque aequales erunt super se terminis constitutis, ut est in hoc ordine ij vj x xiij.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:16)
Atque hoc in numerosioribus terminis initio sumpto a mediis evenit usquedum ad extrema veniatur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:18)
Nam et partes solvuntur et usque ad unitatem sectio illa non pervenit, sed ante unitatem invenitur terminus, quem secare non possis.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:9)
Et rurus xxviij et xij si iungas, faciunt xl, quorum xx medietas medius eorum terminus invenitur.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:3)
medius vero eorum terminus, id est xxiiij si multiplicetur, eosdem rursus dlxxvj procreabit.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:3)
et rurus si xxiiij in xcvj multiplicentur, faciunt mmccciiij, quorum medius terminus, id est xlviij, si in semet ipsum duactur, idem mmcciiij procreantur.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:4)
Ubi autem termini duo duas medietates includunt, quod fit multiplicatis extremitatibus, hoc idem redditur in alterutram summam medietatibus ductis.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:5)
Metitur autem numerus numerum, quotiens vel semel vel bis vel tertio vel quotienslibet numerus ad numerum comparatus neque deminuta summa neque aucta ad comparati numeri terminum usque pervenerit, ut ij si ad vj compares, binarius numerus senarium tertio metietur.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:6)
Metientur autem, si per pares numeros a binario inchoantes positos inter se inpares rata intermissione transsiliant, ut primus duo, secundus iiij, tertius vj quartus viij quintus x, vel si locos suos conduplicent et secundum duplicationem terminos intermittant, ut ternarius qui primus est numerus et unus -- omnis enim primus unus est -- bis locum suum multiplicet faciatque bis unum;
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 5:2)
Rursus si ex duobus unum auferam in uno terminus detractionis haerebit, quem duorum illorum numerorum, id est viiij et xxviiij solam neque aliam constat esse mensuram.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 2:6)
Atque hic quidem, cuius compositae partes totius summam numeri vincunt, superfluus appellatur, deminutus vero ille, cuius eodem modo compositae partes totius termini multitudine superantur, ut viij vel xiiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:10)
Rursus xiiij habent medietatem, id est septenarium, habent septimam, id est ij, habent quartam decimam, id est j quae in unum si collectae sint, denarii numeri summa succrescit, toto scilicet termino minor.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:12)
Inter hos autem velut inter inaequales intemperantias medii temperamentum limitis sortitus est ille numerus, qui perfectus dicitur, virtutis scilicet aemulator, qui nec supervacua progressione porrigitur, nec contracta rursus deminutione remittitur, sed medietatis obtinens terminum suis aequus partibus nec crassatur abundantia, nec eget inopia, ut vj vel xxviiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 3:1)

SEARCH

MENU NAVIGATION