라틴어 문장 검색

Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Hoc autem in hac est dispositione divinum, quod omnes angulares numeri tetragoni sunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:1)
Circum ipsos vero qui sunt, id est circum angulares, longilateri numeri sunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:4)
Nam cum vj ex binario ternarioque nascantur, tres binarium numerum uno superant, cunctique alii eiusdem modi sunt, ut primo et secundo ordine ad alterutrum multiplicatis terminis procreentur, ita ut quod nascitur ex duobus longilateris altrinsecus positis et bis medio tetragono tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:11)
et ut angulorum totius descriptionis ad angulares tetragonos positorum unius anguli sit prima unitas, alterius vero, qui contra est, tertia, bini vero altrinsecus anguli secundas habeant unitates;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:13)
et duo angularium tetragonorum anguli aequum faciunt, quod sub ipsis continetur, illi, quod fit ab uno illorum, qui est altrinsecus, angulorum.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:14)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
et hi semper nascentur dispositis in ordinem a binario numero omnibus naturaliter paribus inparibusque terminis, si contra eas omnes a quinario numero inpares comparentur, ut primum primo, secundum secundo, tertium tertio caute et diligenter adponas, ut sit dispositio talis:
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:5)
Si vero a duobus paribus omnibus dispositis terminis illi, qui a quinario numero inchoantes quinario numero rursus sese transsiliunt, comparentur, omnes duplices sesqualteros creant, ut est subiecta descriptio,
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 5:1)
Si autem a ternario numero ingressi cunctos naturalis numeri triplices disponamus et eis a denario numero denario sese supergredientes ordine comparemus, omnes triplices sesquitertii in ea terminorum continuatione provenient.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 17:1)
Sint enim nobis tres aequales termini, id est tres unitates, vel ter bini vel ter terni vel ter quaterni vel quantos ultra libet ponere.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:5)
Quod enim in unis tribus terminus evenit, idem contingit in ceteris.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:6)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Iaceant igitur tres termini aequales.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:14)
Sint enim iij duplices termini, qui ex aequalibus creati sunt, et qui ultimus est, primus ponatur hoc modo:
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 15:3)

SEARCH

MENU NAVIGATION