라틴어 문장 검색

Agatur CH occurrens ipsis AK & KF, illi in C, huic in F, & ob parallelas CH, MX & aequales AC, AI, erit AE aequalis AM, & propterea etiam aequalis KN.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:8)
gravitati proportionale, sitque DF ipsi DB perpendicularis & aequalis, & per verticem F describatur Hyperbola FTVE cujus semidiametri conjugatae sint DB & DF, quaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 21:7)
& quaeratur resistentia corporis in loco quovis D. Secetur recta infinita OQ in punctis O, C, P, Q ea lege ut (si erigantur perpendicula OK, CT, PI, QE, centroque O & Asymptotis OK, OQ describatur Hyperbola TIGE secans perpendicula CT, PI, QE in T, I & E, & per punctum I agatur KF occurrens Asymptoto OK in K, & perpendiculis CT & QE in L & F) fuerit area Hyperbolica PIEQ ad aream Hyperbolicam PITC ut arcus BC descensu corporis descriptus ad arcum Ca ascensu descriptum, & area IEF ad aream ILT ut OQ ad OC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 30:3)
Et si centro C & intervallo CF describatur circulus FfM occurrens rectis de & AB in f & M, erit M locus ad quem deinceps absque ulteriore resistentia ascenderet, & df velocitas quam acquireret in d.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:10)
sitque velocitas corporis D ad velocitatem corporis E, & velocitas corporis F ad velocitatem corporis G, in dimidiata ratione virium T ad vires V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:8)
resistentia corporis D erit ad resistentiam corporis E, & resistentia corporis F ad resistentiam corporis G in velocitatum ratione duplicata;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:9)
& augendo velocitates corporum D & F in ratione quacunque, ac diminuendo vires particularum Medii B in eadem ratione duplicata, accedet Medium B ad formam & conditionem Medii C pro lubitu, & idcirco resistentiae corporum aequalium & aequivelocium E & G in his Mediis, perpetuo accedent ad aequalitatem, ita ut earum differentia evadat tandem minor quam data quaevis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:11)
Proinde cum resistentiae corporum D & F sint ad invicem ut resistentiae corporum E & G, accedent etiam hae similiter ad rationem aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:12)
Corporum igitur D & F, ubi velocissime moventur, resistentiae sunt aequales quam proxime:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:13)
& propterea cum resistentia corporis F sit in duplicata ratione velocitatis, erit resistentia corporis D in eadem ratione quamproxime. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:14)
Unde obiter cum angulus CSB semper sit acutus, consequens est, quod si solidum ADBE convolutione figurae Ellipticae vel Ovalis ADBE circa axem AB facta generetur, & tangatur figura generans a rectis tribus FG, GH, HI in punctis F, B & I, ea lege ut GH sit perpendicularis ad axem in puncto contactus B, & FG, HI cum eadem GH contineant angulos FGB, BHI graduum 135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:1)
Designet igitur F aream foraminis, A altitudinem aquae foramini perpendiculariter incumbentis, P pondus ejus, AF quantitatem ejus, S spatium quod dato quovis tempore T in vacuo libere cadendo describeret, & V velocitatem quam in fine temporis illius cadendo acquisierit:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:1)
d, f, h, k, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:6)
undarum culmina, & B, D, F, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:3)
) si distantiae inter undarum loca altissima A, C, E, & infima B, D, F aequentur duplae penduli longitudini, partes altissimae A, C, E tempore oscillationis unius evadent infimae, & tempore oscillationis alterius denuo ascendent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 30:10)

SEARCH

MENU NAVIGATION