라틴어 문장 검색

sint viribus grauitatis analogae, erunt areae Bkq, qklr, rlms, smnt, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:24)
Sumantur analogarum summae, & erunt areae Bkq, Blr, Bms, Bnt, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:27)
necnon areae ABqK, ABrL, ABsM, ABtN, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 19:29)
RV aequalis DR × QB ÷ N, & Rr (id est RV - Vr seu {DR × QB - tGT} ÷ N) aequalis {DR × AB - RDGT} ÷ N. Exponatur jam tempus per aream RDGT, & (per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:2)
Quo demonstrato, consequens est etiam ut areae his lineis descriptae sint in progressione consimili cum spatiis quae velocitatibus describuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:14)
& longitudines descriptae per areas Kl, Lm, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 4:16)
& componendo, ita Ca ad Cd. Ergo areae ABba, DEed, hoc est spatia descripta aequantur inter se, & velocitates primae AB, DE sunt ultimis ab, de, & propterea (dividendo) partibus etiam suis amissis AB - ab, DE - de proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 13:2)
Dividatur jam area illa in partes aequales ABMI, IMNK, KNOL, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:15)
erunt in progressione Geometrica. Q. E. D. Et simili argumento, in ascensu corporis, sumendo, ad contrariam partem puncti A, aequales areas ABmi, imnk, knol, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:17)
Positis jam demonstratis, dico quod si Tangentes angulorum sectoris Circularis & sectoris Hyperbolici sumantur velocitatibus proportionales, existente radio justae magnitudinis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 47:1)
& Sector Hyperbolicus ATD ut tempus descensus omnis praeteriti, si modo Sectorem tangentes Ap & AP sint velocitates.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 48:4)
areae totae ab initio genitae ABKN & AVD ut spatia tota ab initio descensus descripta. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:12)
Nimirum quod spatium illud omne sit ad spatium, uniformi cum velocitate AC eodem tempore descriptum, ut est area ABnk ad Sectorem ADt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 53:3)
Velocitas corporis tempore ATD cadentis est ad velocitatem, quam eodem tempore in spatio non resistente acquireret, ut triangulum APD ad Sectorem Hyperbolicum ATD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 54:2)
Et velocitates illae initio descensus aequantur inter se, perinde ut areae illae ATD, APD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 54:4)

SEARCH

MENU NAVIGATION