라틴어 문장 검색

His vero contra se positis, id est primo et incomposito et secundo et composito, et naturali diversitate disiunctis alius in medio consideratur, qui ipse quidem compositus sit et secundus et alterius recipiens mensionem atque ideo et partis alieni vocabuli capax, sed cum fuerit ad alium eiusdem generis numerum comparatus, nulla cum eo communi mensura coniungitur;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:1)
ille vero, ut si naturaliter quadam necessaria parte detracta aut minus oculo nasceretur, ut Cyclopeae frontis dedecus fuit, vel quo alio curtatus membro naturale totius suae plenitudinis dispendium sortiretur.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 2:2)
quod primum in naturalis numeri dispositione conveniet.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:3)
Si enim positis in naturali constitutione numeris singulos per suas sequentias pares eligas, omnium ab uno parium atque inparium sese sequentium duplices erunt et huius speculationis terminus deficit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:2)
Ponatur enim naturalis numerus hoc modo:
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:3)
si vero tertium parem sumas, id est vj, tertii numeri in naturali constitutione duplus est, id est ternarii;
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:6)
Describantur enim longissimi versus triplicium naturalis numeri atque duplicium et sit hoc modo:
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 1:8)
Primus igitur versus continet numerum naturalem, secundus eius triplicem, tertius vero duplicem.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 5:1)
Sit enim in ordine hoc modo numerus naturalis, ut sub eo quadrupli et tripli subponantur, sub primo quadruplo primus triplus, sub secundo secundus, sub tertio tertius, et eodem modo cuncti eiusdem primi versus tripli in ordinem digerantur.
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 6:4)
Sit enim talis descriptio, in qua ponatur in ordinem usque ad denarium numerum continui numeri ordo naturalis et secundo versu duplus ordo texatur, tertio triplus, quarto quadruplus et hoc usque ad decuplum.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:2)
Quam rem nobis scilicet et ipsa naturalis obiecit integritas, nihil nobis extra machinantibus, ut in ipso modulo descriptionis apparet.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:4)
Ordo autem eorum naturalis est, quotiens disponuntur a tribus omnes pares atque inpares numeri naturaliter constituti et sub his aptantur alii, qui sunt a quinario numero incipientes omnes inpares.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:4)
Sin vero omnes in ordinem quadrupli disponantur, hi qui naturalis numeri quadrupli sunt, ut unitatis quadruplus, et duorum triumque et quattuor atque quinarii et ceterorum sese sequentium, et ad eos aptentur a novenario numero inchoantes semper sese novenario praecedentes, tunc duplicis sesquiquartae proportionis forma texetur.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 11:1)
Si autem a ternario numero ingressi cunctos naturalis numeri triplices disponamus et eis a denario numero denario sese supergredientes ordine comparemus, omnes triplices sesquitertii in ea terminorum continuatione provenient.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 17:1)
Sed quae rerum elementa sunt, ex hisdem principaliter omnia componuntur, et in eadem rursus resolutione facta solvuntur;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:2)

SEARCH

MENU NAVIGATION