라틴어 문장 검색

Resistentiam, quae oritur ex defectu lubricitatis partium Fluidi, caeteris paribus, proportionalem esse velocitati, qua partes Fluidi separantur ab invicem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 2:1)
Unde si toti cylindrorum & fluidi Systemati auferatur motus omnis angularis cylindri exterioris, habebitur motus fluidi in cylindro quiescente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 10:2)
& ex Hypothesi, pressio qua quadratum DP urget Fluidum inclusum, erit ad pressionem qua latus illud quadratum db urget Fluidum inclusum, ut Medii densitates ad invicem, hoc est ab cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 43:6)
Igitur corporis in Fluido quovis Elastico velocissime moventis eadem fere est resistentia ac si partes Fluidi viribus suis centrifugis destituerentur, seque mutuo non fugerent:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 11:2)
Ergo si actio corporis longinqui Q, qua vis illa diminuitur, augeatur ac diminuatur per vices, augebitur simul ac diminuetur Radius SP per vices, & tempus periodicum augebitur ac diminuetur in ratione composita ex ratione sesquiplicata Radii & ratione dimidiata qua vis illa centripeta corporis centralis S per incrementum vel decrementum actionis corporis longinqui Q diminuitur vel augetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:12)
Si vas & fluidum quiescant & globus uniformi cum motu revolvatur, propagabitur motus paulatim per fluidum totum in vas, & circumagetur vas nisi violenter detentum, neq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:2)
Si Cylindrus solidus infinitè longus in fluido uniformi & infinito circa axem positione datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur Fluidum in Orbem, perseveret autem fluidi pars unaquaeque uniformiter in motu suo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 4:1)
Unde nec motus partium fluidi inter se, per pressionem fluido ubivis in externa superficie illatam, mutari possunt nisi, quatenus aut figura superficiei alicubi mutatur, aut omnes fluidi partes intensius vel remissius sese premendo difficilius vel facilius labuntur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 13:2)
Quoniam vis centripeta corporis centralis S, qua corpus P retinetur in Orbe suo, augetur in quadraturis per additionem vis LM, ac diminuitur in Syzygiis per ablationem vis KL, & ob magnitudinem vis KL, magis diminuitur quam augeatur, est autem vis illa centripeta (per Corol.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:2)
Si globus in fluido quiescente similari & infinito circa axem positione datum uniformi cum motu revolvatur, communicabitur motus fluido in morem Vorticis, & motus iste paulatim propagabitur in infinitum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 20:2)
Haec ita se habent ubi Fluidi compressione condensati densitas est ut vis compressionis, vel, quod perinde est, spatium a Fluido occupatum reciproce ut haec vis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 39:25)
Nam si particulae minimae Fluidi subtiliati eandem habeant proportionem eundemque situm ad solidum datum in eo movens, quem particulae totidem minimae Fluidi non subtiliati habent ad solidum auctum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:4)
& diminui in ratione chordae ad arcum, ob tempus (seu durationem resistentiae qua arcuum differentia praedicta generatur) diminutum in eadem ratione:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:4)
Si Sphaera solida, in fluido uniformi & infinito, circa axem positione datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur fluidum in orbem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 15:1)
& haec figura diminuendo in eadem ratione diametrum tertiam, quae diametris duabus AP, PQ perpendicularis est, vertitur in dictam Sphaeroidem, & gravitas in A, in casu utroque, diminuitur in eadem ratione quam proximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:11)

SEARCH

MENU NAVIGATION