라틴어 문장 검색

Quos autem superius laterculos diximus, quae sunt et ipsae quidem solidae figurae, hoc modo fiunt, quotiens aequalibus spatiis in longitudinem latitudinemque porrectis minor his additur altitudo, ut sunt huius modi:
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:1)
tres ter bis, qui sunt xviij vel quattuor quater bis, vel alio quo modo, ut his in latitudinem longitudinemque aequis minor altitudo ducatur.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:2)
Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
quanto unus tribus minor est, tanto binarius quaternario, vel quanto ternarius unitatem superat, tanto binarium transgreditur quaternarius.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:26)
Secundum quem numerum et priores quinque habitudines comparationesque descriptae sunt, ubi quinque maioribus proportionibus, quos vocavimus duces, minores aptavimus alios terminos, quos comites diximus.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:5)
Namque in dispositione hac j ij iij minores termini sunt j et ij, maiores ij et iij. Et ij ad unum duplus est, tres vero ad ij sesqualter.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:2)
Nunc vero quae hanc sequitur, geometrica medietas expediatur, quae sola vel maxime proportionalitas appellari potest propterea quod in eisdem proportionibus terminorum vel in maioribus vel in minoribus speculatio ponitur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:1)
Namque binarius ad unitatem ipsa unitate differt, et quaternarius binario ipso binario et octonarius quaternario ipso quaternario et deinceps maiores alii ipsis minoribus ab eisdem ipsis differunt, quos numerositate praetereunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:3)
Differntiae dupli minores
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 14:1)
Differentiae tripli minores
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 18:1)
Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
In hac vero in maioribus quidem terminis maior est proportio, in minoribus vero minor.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:3)
Illa est enim vere proportionalitas, quae medietatis quodammodo locum obtinens et in maioribus et in minoribus aequalibus proportionum comparationibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:7)
In hac enim dispositione armonica, quae est ij iij vj ternarius binarium tertia sui parte vincit, idem ternarius a senario tota sui quantitate superatur, id est tribus, idemque ipse ternarius medietate minoris vincit minorem, id est uno, et medietate maioris a maiore termino vincitur, id est tribus.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:15)
Nam in duplici proportione medius terminus ad minoris suique differentiam quadruplus invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 9:2)

SEARCH

MENU NAVIGATION