라틴어 문장 검색

& linea emergentiae KI producta occurrat HM in L. Centro L intervallo LI describatur circulus, secans tam HM in P & Q, quam MI productam in N;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 4:6)
Minuatur jam planorum intervalla & augeatur numerus in infinitum, eo ut attractionis vel impulsus actio secundum legem quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 6:9)
Vis attractionis vel impulsus agendo secundum lineas perpendiculares nil mutat motum secundum parallelas, & propterea corpus hoc motu conficiet aequalibus temporibus aequalia illa secundum parallelas intervalla, quae sunt inter lineam AG & punctum H, interq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:4)
tandem eadem obliquitate in h, qua incidit in H. Concipe jam planorum Aa, Bb, Cc, Dd, Ee intervalla in infinitum minui & numerum augeri, eo ut actio attractionis vel impulsus secundum legem quamcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:16)
A, B, & intervallis AM, BN describantur circuli duo se mutuo secantes in D:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:11)
produc tum AB ad G ut sit BG ad CE ut M - N ad N, tum AD ad H ut sit AH aequalis AG, tum etiam DF ad K ut sit DK ad DH ut N ad M. Junge KB, & centro D intervallo DH describe circulum occurrentem KB productae in L, ipsiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 26:4)
Hinc in continue proportionalibus, si terminus unus datur, momenta terminorum reliquorum erunt ut iidem termini multiplicati per numerum intervallorum inter ipsos & terminum datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 32:2)
A & intervallo AH describatur Circulus secans Hyperbolam illam in puncto H;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:6)
Si centro S intervallis duobus describantur duo circuli;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 14:2)
Centro S intervallis continue proportionalibus SA, SB, SC &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:3)
tamen concipiendo Spiralium illarum singulas revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo motus corporum in hujusmodi Spiralibus peragantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:3)
Centro C & intervallo CA vel CB construatur semicirculus, BEeA.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:5)
Et si centro C & intervallo CF describatur circulus FfM occurrens rectis de & AB in f & M, erit M locus ad quem deinceps absque ulteriore resistentia ascenderet, & df velocitas quam acquireret in d.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:10)
Itaque motus erunt iidem in utroque casu, nisi quatenus perexigua particularum sese non contingentium intervalla diversitatem efficiant:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:6)
quae quidem diversitas diminuendo particularum intervalla diminui potest in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:7)

SEARCH

MENU NAVIGATION