라틴어 문장 검색

Si vas & fluidum quiescant & globus uniformi cum motu revolvatur, propagabitur motus paulatim per fluidum totum in vas, & circumagetur vas nisi violenter detentum, neq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:2)
Quod si vas vi aliqua detineatur vel revolvatur motu quovis constanti & uniformi, deveniet Medium paulatim ad statum motus in Corollariis 8.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:4)
Deinde verò si, viribus illis cessantibus quibus vas & globus certis motibus revolvebantur, permittatur Systema totum Legibus Mechanicis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:7)
motus suos in se mutuò per fluidum propagare prius cessabunt, quàm eorum tempora periodica aequantur inter se, & Systema totum ad instar corporis unius solidi simul revolvatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 29:9)
& eadem Regula obtinet in Planetis qui circa Solem revolvuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 32:3)
Vorticis vim illam, qua priùs in Orbita sua tanquam in aequilibrio constitutum retinebatur, jam superans, recedet à centro & revolvendo describet Spiralem, non amplius in eundem Orbem rediens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:11)
Eo autem in casu ostensum est, quod revolveretur eadem lege cum partibus fluidi à centro Vorticis aequaliter distantibus. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:14)
Ergo solidum quod in Vortice revolvitur & in eundem Orbem semper redit, relativè quiescit in fluido cui innatat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 36:2)
Et si vortex sit quoad densitatem uniformis, corpus idem ad quamlibet à centro Vorticis distantiam revolvi potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 37:2)
Nam Planetae secundum Hypothesin Copernicaeam circa Solem delati revolvuntur in Ellipsibus umbilicum habentibus in Sole, & radiis ad Solem ductis areas describunt temporibus proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:2)
At partes Vorticis tali motu revolvi nequeunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:3)
Designent AD, BE, CF, orbes tres circa Solem S descriptos, quorum extimus CF circulus sit Soli concentricus, & interiorum duorum Aphelia sint A, B, & Perihelia D, E. Ergo corpus quod revolvitur in orbe CF, radio ad Solem ducto areas temporibus proportionales describendo, movebitur uniformi cum motu.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:4)
Corpus autem quod revolvitur in Orbe BE, tardiùs movebitur in Aphelio B & velociùs in Perihelio C, secundum leges Astronomicas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:5)
Igitur si Terra in hac Materia coelesti relativè quiescens ab ea deferretur, & una circa Solem revolveretur, foret hujus velocitas in principio Piscium ad ejusdem velocitatem in principio Virginis in ratione sesquialtera.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 40:11)
Mercurium & Venerem circa Solem revolvi ex eorum phasibus lunaribus demonstratur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 17:1)

SEARCH

MENU NAVIGATION