라틴어 문장 검색

Quinetiam si in praefata Ellipseos revolutione punctum quodvis N describat circulum NM, secantem parallelos Ff, Dd in locis quibusvis R, T, & aequatorem AE in S;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:16)
Hinc in revolutione diurna loci cujusvis F, affluxus erit maximus in F, hora tertia post appulsum Lunae ad Meridianum supra Horizontem;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:18)
Diximus aream, quam Luna radio ad Terram ducto describit, esse tempori proportionalem, nisi quatenus motus Lunaris ab actione Solis turbatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:1)
Si Luna P in Ellipsi DBCA circa Terram in centro Ellipseos quiescentem moveretur, & radio SP ad Terram ducto describeret aream CSP tempori proportionalem;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 46:2)
) duplex erit, altera lineae 2IT vel 2Kp, altera lineae PI proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:7)
Et angulus mTl, si modo angulus Tml rectus sit, est ut ml ÷ Tm, & propterea ut IT × Pm ÷ Tm id est (ob proportionales Tm & mP, TP & PH) ut IT × PH ÷ TP, adeoque ob datam TP, ut IT × PH.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:10)
Est autem PT ad PK ut PM ad Kk, adeoque ob datas PT & PM est Kk ipsi PK proportionalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 54:7)
Est & AT ad PD ut AZ ad PH, & propterea PH rectangulo PD × AZ proportionalis, & conjunctis rationibus, PK × PH est ut contentum Kk × PD × AZ, & PK × PH × AZ ut Kk × PD × AZ qu.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 54:8)
Et si Luna, radio ad Terram ducto, aream describat tempori proportionalem, erit motus Nodi in Ellipsi ut area pDdm.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 4:2)
& summa omnium arearum illarum, in revolutione integra, sit area Ellipseos totius:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 6:3)
Motus totus horarius Nodorum in Syzygiis (ubi Luna radio ad Terram ducto aream tempori proportionalem describere supponebatur) erat 32". 42"'.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 7:18)
id est (ob proportionales AZ, ZY) ut rectangulum sub AZ & ZY, hoc est ut area AZYa.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:6)
33^{iv}, ut aggregatum omnium arearum HpMh, in revolutione puncti p generatarum, & sub signis propriis + & - conjunctarum, ductum in AZ × TZ × Pp ÷ PG, ad Mp × AT cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:4)
Et si in planum QR demittatur perpendiculum LM, vis tota particulae illius ad Terram circa ipsius centrum convertendum proportionalis erit eidem LM:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 58:2)
& propterea vis tota particulae illius, in revolutione integrâ, ad aequinoctia movenda, ut & vis tota particularum omnium, & motus aequinoctiorum à vi illa oriundus, diminuitur in eadem ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 8:6)

SEARCH

MENU NAVIGATION