라틴어 문장 검색

Nunc autem nobis de his numeris sermo futurus est, qui circa figuras geometricas et earum spatia demensionesque versantur, id est de linearibus numeris et de triangularibus vel quadratis ceterisque, quos sola pandit plana demensio, nec non de inaequali laterum compositione coniunctis;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:4)
Nam si quotlibet fuerint termini pares, tantum quidem est a primo ad secundum, quantum a secundo ad tertium, sed inter primum et secundum vel secundum et tertium nulla est intervalli longitudo vel spatium.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:16)
VI enim et vj nulla spatii intervalla disiungunt.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:19)
Omnis enim numerus in se ipsum multiplicatus alium quendam efficit maiorem, quam ipse est, idcirco, quoniam intervalla multiplicata maiore sese spatii prolixitate distendunt.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:22)
quae linea, quod unius est intervalli sortita naturam, a superficie uno intervallo, a soliditate duobus spatiis vincitur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:39)
Sic etiam in numero unitas quidem, cum ipsa linearis numerus non sit, in longitudinem tamen distenti numeri principium est, et linearis numerus, cum ipse totius latitudinis expers sit, in aliud tamen spatium latitudinis extenti numeri sortitur initium.
(보이티우스, De Arithmetica, Liber secundus, De numero lineari 1:1)
Duae enim lineae rectae spatium non continent.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:3)
Est igitur primus triangulus numerus, qui in solis tribus unitatibus dissipatur secundum superficiei positionem, triangula scilicet descriptione, et post hunc quicunque aequalitatem laterum in trina laterum spatia segregant.
(보이티우스, De Arithmetica, Liber secundus, Dispositio triangulorum numerorum 2:1)
Nam primi potestate pentagoni, id est unius, idem unus spatium lateris tenet, secundi vero quinarii, qui est actu ipso atque opere primus pentagonus, bini per latera fixi sunt;
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:4)
Et ad eundem modum cunctae a ceteris multiangulis profectae formae in altioris summae spatia producuntur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:1)
Hi autem sunt, ut si quis faciat bis tres quater, vel ter quattuor quinquies et alia huiusmodi, quae per inaequales spatiorum gradus inaequaliter provehuntur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:3)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)
Quos autem superius laterculos diximus, quae sunt et ipsae quidem solidae figurae, hoc modo fiunt, quotiens aequalibus spatiis in longitudinem latitudinemque porrectis minor his additur altitudo, ut sunt huius modi:
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:1)
Horum igitur si primum compares primo, dupli quantitas invenitur, quae est prima multiplicitatis species, si vero secundum secundo hemioliae quantitatis habitudo producitur, si tertium tertio sesquitertia proportio procreatur, si quartum quarto, sesquiquarta, et si quintum quinto, sesquiquinta, et hinc superparticularium normam in quamvis longissimum spatium progrediens integram inoffensamque repperies, ita ut in prima dupli proportione unitatis solius sit differentia, duo namque ab uno sola semper discrepant unitate.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:1)
In hoc igitur minimo puncti quodam puncto circumsaepti atque conclusi de peruulganda fama, de proferendo nomine cogitatis, ut quid habeat amplum magnificumque gloria tam angustis exiguisque limitibus artata?
(보이티우스, De philosophiae consolatione, Liber Secundus, XIII 1:10)

SEARCH

MENU NAVIGATION