라틴어 문장 검색

Ideoque differentia arearum & spatium illud proportionalibus momentis crescentia vel decrescentia, & simul incipientia vel simul evanescentia, sunt proportionalia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 34:9)
spatium quod corpus ascensu vel descensu toto in Medio resistente describit, erit ad spatium quod in Medio non resistente eodem tempore describere posset, ut arearum illarum differentia ad BD × V^2 ÷ 4AB, ideoque ex dato tempore datur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:3)
Et propterea momentum areae V^2 est ad momentum differentiae arearum DET & AKNb, ut {BD × V × DA × m} ÷ {AB × DE} ad AP × BD × m ÷ AB sive ut V × DA ÷ DE ad AP;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:10)
AEqualis igitur est area quam minima BD × V^2 ÷ 4AB differentiae quam minimae arearum DET & AKNb.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:12)
Unde cum spatia in Medio utroque, in principio descensus vel fine ascensus simul descripta accedunt ad aequalitatem, adeoque tunc sunt ad invicem ut area BD × V^2 ÷ 4AB & arearum DET & AKNb differentia;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:13)
ob eorum analoga incrementa necesse est ut in aequalibus quibuscunque temporibus sint ad invicem ut area illa BD × V^2 ÷ 4AB & arearum DET & AKNb differentia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:14)
Sumantur proportionalium consequentium differentiae, & fiet arcus PQ ad arcum Rr ut SQ ad SP - SP^½ × SQ^½, seu ½VQ;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:10)
Ex resistentia oritur arearum differentia RSr, & propterea resistentia est ut lineolae Qr decrementum Rr collatum cum quadrato temporis quo generatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:13)
id est ut terminus ille primus AS^½ ad differentiam duorum primorum AS^½ - BS^½, & quam proxime ut 2/3AS ad AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:10)
Deinde ex arearum, aequalibus temporum particulis confectarum PSQ & QSR, differentia RSr, dabitur corporis retardatio, & ex retardatione invenietur resistentia ac densitas Medii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 26:3)
differentia virium est vis illa motrix, quam in praecedentibus Propositionibus ut vim centripetam consideravimus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 25:4)
Sin corpus a vi illa urgeatur levius, differentia virium pro vi centrifuga haberi debet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 25:5)
Sunt igitur summae illae differentiis suis AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:19)
differentiae AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:21)
Quare cum densitates sint ut harum pressionum summae, differentiae densitatum AH - BI, BI - CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:11)

SEARCH

MENU NAVIGATION