라틴어 문장 검색

Namque binarius ad unitatem ipsa unitate differt, et quaternarius binario ipso binario et octonarius quaternario ipso quaternario et deinceps maiores alii ipsis minoribus ab eisdem ipsis differunt, quos numerositate praetereunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:3)
Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
Hi namque omnes quaternaria sese numerositate transcendunt, quod idcirco contingit, quoniam primi qui positi sunt, id est eorum fundamenta, binario se numero praecedebant, quos quoniam per binarium multiplicavimus, in quaternarium faciunt summam.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:8)
Et habet quidem, quod utrique non habent, quod cum in uno solus maior terminus divideretur, in alio vero solus maior terminus divisionem recipit, neque minor solus terminus a divisione seiungitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:8)
Nam in hac dispositione ij iiij v quaternarius ad binarium duplus est. Sed inter quaternarium et binarium ij sunt, inter quaternarium vero et maiorem terminum, id est quinque, j. Et ij ad j dupli sunt.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:3)
Non eius potest esse propria forma divisio prima, cum ista pars sit prime divisionis.
(단테 알리기에리, Epistolae 105:3)
Namque minorem, id est binarium, uno superat, id est ipsius medietate binarii, a quaternario vero uno relinquitur, quae pars quaternarii quarta est. Recte igitur dictum est, medium terminum in huiusmodi medietate eadem sui parte et minorem vincere et a maiore superari, sed non eisdem partibus vel minoris minorem transgredi vel maioris a maiore transcendi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:12)
quanto unus tribus minor est, tanto binarius quaternario, vel quanto ternarius unitatem superat, tanto binarium transgreditur quaternarius.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:26)
In duas enim partes divisione nihil minus est. Cum enim totum quis fuerit trina divisione partitus, spatii quidem summa minuitur, sed numerus divisionis augetur.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:8)
Namque ex uno primo tetragono et binario primo parte altera longiore ternarius triangulus copulatur, et ex binario et quaternario, id est ex secundo tetragono senarius triangulus procreatur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex quadratis et parte altera longioribus omnis formarum ratio consistat 1:2)
Primus ergo duplex est binarius numerus, qui unum solum sesqualterum recipit, id est ternarium, binarius enim contra ternarium comparatus sesqualteram efficit proportionem.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:4)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Inpar vero numerus est, qui ad quamlibet illam divisionem per inaequalia semper sdividitur, ut utrasque species numeri semper ostendat, nec unquam altera sine alter asit, sed una pars paritati, inparitati alia deputetur, ut, vij si dividas in iij atque iij, altera portio par altera inpar est. et hoc idem in cuntis inparibus numerus invenitur, neque unquam in inparis divisione praeter se esse possunt.
(보이티우스, De Arithmetica, Liber primus, Alia secundum antiquiorem modum divisio paris et inparis 1:8)

SEARCH

MENU NAVIGATION