라틴어 문장 검색

A^{n ÷ m} momentum fuerit n ÷ m aA^{(n-m) ÷ m}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 25:7)
× B momentum fuerit 2aAB + A^2b;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 25:9)
& Genitae A^3B^4C^2 momentum 3aA^2B^4C^2 + 4A^3bB^3C^2 + 2A^3B^4Cc;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 25:10)
& Genitae A^3 ÷ B^2 sive A^3B^{-2} momentum 3aA^2B^{-2} - 2A^3bB^{-3}:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 25:11)
Rectangulum quodvis motu perpetuo auctum AB, ubi de lateribus A & B deerant momentorum dimidia ½a & ½b, fuit A - ½a in B - ½b, seu AB - ½aB - ½Ab + ¼ab;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 26:2)
& quam primum latera A & B alteris momentorum dimidiis aucta sunt, evadit A + ½a in B + ½b seu AB + ½aB + ½Ab + ¼ab.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 26:3)
Ponatur AB aequale G, & contenti ABC seu GC momentum (per Cas. 1.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 27:2)
Et eodem argumento momentum dignitatis cujuscunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 28:4)
Proinde momentum ipsius 1 ÷ A seu A^{-1} est -a ÷ A^2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 29:3)
Et generaliter cum 1 ÷ A^n in A^n sit 1, momentum ipsius 1 ÷ A^n ductum in A^n una cum 1 ÷ A^n in naA^{n - 1} erit nihil.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 29:4)
Et propterea momentum ipsius 1 ÷ A^n seu A^{-n} erit -na ÷ A^{n + 1}. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 29:5)
Et cum A^½ in A^½ sit A, momentum ipsius A^½ in 2A^½ erit a, per Cas. 3:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 30:2)
momentum ipsius A^½ erit a ÷ 2A^½ sive 2aA^{-½}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 30:4)
{m ÷ n}aA^{(m-n) ÷ n} aequale b, id est aequale momento ipsius A^{m ÷ n}. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 30:7)
Hinc in continue proportionalibus, si terminus unus datur, momenta terminorum reliquorum erunt ut iidem termini multiplicati per numerum intervallorum inter ipsos & terminum datum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 32:2)

SEARCH

MENU NAVIGATION