라틴어 문장 검색

Hi vero idcirco a ternario numero inchoant, quod latitudinis et superficiei solus ternarius principium est. In geometria quoque idem planius invenitur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:2)
Adeo haec figura princeps est latitudinis, ut ceterae omnes superficies in hanc resolvantur, ipsa vero, quoniam nullis est principiis obnoxia neque ab alia latitudine sumpsit initium, in sese ipsam solvatur.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:10)
Quare perfecte, ut arbitror, demonstratum est, omnium formarum principium elementumque esse triangulum.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:6)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)
Hunc alteritatis principium esse dicebant, eandem autem naturam et semper sibi similem consentientemque nullam aliam nisi primaevam ingeneratamque unitatem.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:3)
Atque ideo alteritatis cuiusdam principium fuit, quod ab illa prima et semper eadem substantia sola tantum est unitate dissimilis.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:5)
Paris vero ordinis binarius numerus princeps est, quae dualitas, cum in eodem ordine paritatis sit, tum principium totius est alteritatis.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:3)
Hi autem numeri idcirco cyclici vel spherici vocantur, quod sphera vel circulus in proprii semper principii reversione formantur.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:8)
Constat igitur primo quidem loco unitatem propriae inmutabilisque substantiae eiusdemque naturae, dualitatem vero primam alteritatis mutationisque esse principium;
(보이티우스, De Arithmetica, Liber secundus, Quod principaliter eiusdem quidem sit substantiae unitas, secundo vero loco inpares numeri, tertio quadrati, et quod principaliter dualitas alterius sit substantiae, secundo vero loco pares numeri, tertio parte altera longiores 1:1)
Primum, quod hanc nobis in principio ipsa numerorum natura et vis naturalis quantitatis obponit.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:5)
— Et qui fieri potest ut principio cognito quis sit rerum finis ignores?
(보이티우스, De philosophiae consolatione, Liber Primus, XII 1:18)
Certe, uti meminisse te arbitror, consulare imperium, quod libertatis principium fuerat, ob superbiam consulum uestri ueteres abolere cupiuerunt, qui ob eandem superbiam prius regium de ciuitate nomen abstulerant.
(보이티우스, De philosophiae consolatione, Liber Secundus, XI 1:3)
Uos quoque, o terrena animalia, tenui licet imagine uestrum tamen principium somniatis uerumque illum beatitudinis finem licet minime perspicaci qualicumque tamen cogitatione prospicitis, eoque uos et ad uerum bonum naturalis ducit intentio et ab eodem multiplex error abducit.
(보이티우스, De philosophiae consolatione, Liber Tertius, V 1:1)
Principium, uector, dux, semita, terminus idem.
(보이티우스, De philosophiae consolatione, Liber Tertius, XVIII 28:1)

SEARCH

MENU NAVIGATION