라틴어 문장 검색

Merito ergo dicentur hi numeri parte altera longiores, quod eorum latera unius tantum sese adiecta numerositate praecedunt.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:6)
Est enim parte altera longior numerus, quicunque unitate tantum lateri crescit adiecta, ut sunt sex, scilicet bis tres, vel xij tres quater et consimiles.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:10)
In sesqualtera vero duorum est differentia, in sesquitertia trium, in sesquiquarta quattuor et deinceps secundum superparticulares formas numerorum, quod ad differentias adtinet, uno tantum crescit adiectio numerum explicans naturalem.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:2)
Et secundum quantitatem quoque numeri eodem modo est. Quantum enim tres superant binarium, tantum binarius unitatem, et quanto unus a duobus minor est, tanto binarius a ternario superatur.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:16)
In qua neglecta proportionis aequalitate terminorum tantum differentiarumque speculatio custoditur, ut:
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:2)
Si igitur in tribus tantum terminis secundum continuam medietatem respexeris vel in quattuor vel in quotlibet aliis secundum disiunctam easdem semper differentias terminorum videbis, tantum solis proportionibus permutatis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:6)
Sit continua medietas j ij iij. Hic unus a duobus et duo a tribus solis tantum singulis distant, et sunt eaedem differentiae, proportiones vero aliae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:8)
Est autem proprium huius medietatis, quod, si in tribus terminis speculatio sit, compositis extremitatibus illa summa, quae inter extremitates est, non loco tantum verum etiam sit quantitate medietas.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:1)
Illud quoque subtilius, quod multi huius disciplinae periti nisi Nicomachus nunquam antea perspexerunt, quod in omni dispositione vel continua vel disiuncta, quod continetur sub duabus extremitatibus minus est eo numero, qui ex medietate conficitur, tantum, quantum possunt duae sub se differentiae continere, quae inter ipsos sunt terminos constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:3)
Omnes enim planae figurae, quae nulla altitudine crescunt, una tantum medietate geometrica continuantur;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:2)
unde duo tantum in his intervalla sunt constituta, a primo scilicet ad medium et a medio ad tertium.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:4)
Si vero fuerint cybi, duas tantum habebunt medietates, ubi tertia inveniri non poterit secundum geometricam scilicet proportionem;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:5)
Horum igitur unus tantum medius in eadem proportione constitui potest.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:10)
bis enim iij senarius est. Et quotienscunque datis duobus tetragonis eorum medietatem volumus invenire, latera eorum multiplicanda sunt, et qui ex his procreabitur, medietas est. Si autem cybi sunt, ut viij et xxvij, duae tantum inter hos eadem proportione medietates constitui queunt, xij scilicet et xviij.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:15)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)

SEARCH

MENU NAVIGATION