라틴어 문장 검색

Namque si duos intermittas, ternarius differentiam continebit, si tres, quaternarius, si quattuor, quinarius aeque in continuis proportionibus atque disiunctis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:2)
Ut si ponantur j ij iij, unus et iij quattuor reddunt, duo vero, qui medius inter utrosque est, quaternarii medietas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:2)
Si enim sint j ij iij iiij, unus et quattuor quinarium creant, ij et iij medii in eundem rursus quinarium surgunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:6)
Inter iij enim et v et vij bini intersunt, quos si in sese multiplices, iiij reddunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:6)
Vel si in quattuor terminis, ut sunt ij iiij viij xvj, quemadmodum est primus ad tertium, id est ij ad viij, sic erit secundus ad quartum, id est iiij ad xvj. Utraque enim proportio quadrupla est. Et conversim quemadmodum quartus est ad secundum, ita tertius notatur ad primum.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 4:1)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Namque si ponantur ij iiij viij xvj xxxij lxiiij, inter hos omnes dupla proportio est. Apparet etiam haec proportionalitas in binis proportionibus ab unitate alternatim parte altera longioribus quadratisque dispositis a prima multiplicitatis habitudine, id est a duplici per cunctas superparticularis habitudines proportionesque discurrens;
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:7)
bis enim bini bis octonarium referunt:
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:21)
Bis enim bini ter xij pandunt.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:25)
Perpensi namque xij ad vj dupli sunt, differentia vero duodenarii et octonarii quaternarius est, octonarii vero et senarii duo. Dupla autem ratione distabunt duobus quattuor comparati.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:5)
Sequens autem aetas, quemadmodum diximus, ad inplendam denariam quantitatem alias quattuor medietates apposuit, quas non adeo quis in veterum libris inveniat.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:3)
Secunda vero inter quattuor, sed octava in ordine proportionalitas est, quotiens in tribus terminis quemadmodum sunt extremitates ad se invicem comparatae, sic eorum differentia ad maiorum terminorum differentiam, ut sunt vj vij viiij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:8)
Tertia vero inter has sequentes quattuor, nona autem in ordine proportio est, quando tribus terminis positis quam proportionem medius terminus ad parvissimum custodit, eam retinet extremorum differentia ad minorum differentiam comparata, ut iiij vj vij. Etenim vj ad iiij sesqualter est, quorum est differentia binarius.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:10)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
Quattuor enim, quibus octonarius a duodenario vincitur, duodenarii tertia pars est. Et si extremitates iungas vj scilicet et xij easque per octonarium medium multiplices, cxliiij sunt.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:18)

SEARCH

MENU NAVIGATION