라틴어 문장 검색

Fluidorum enim utcunque subtilium, si densa sint, vim ad solida movenda resistendaque permagnam esse, & quomodo vis illius quantitas per experimenta determinetur, plenius patebit per Propositiones duas quae sequuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 63:7)
& Propositio etiamnum valebit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 72:4)
& e regione puncti illius collocavi Regulam in digitos distinctam, quorum ope notarem longitudines arcuum a Pendulo descriptas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 78:4)
omnino ut in Corollariis Propositionis xxxii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 78:19)
habebimus Regulam inveniendi differentiam arcuum pro velocitate quacunque data.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 79:8)
si pro A, B, & C scribantur numeri inventi, fiet resistentia Globi ad ejus pondus, ut 0,0001334V + 0,000623V^{3/2} + 0,00227235V^2 ad longitudinem Penduli inter centrum suspensionis & Regulam, id est ad 121 digitos.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:14)
Verum in liquoribus qui ad sensum satis fluidi sunt, ut in Aere, in aqua seu dulci seu falsa, in Spiritibus vini, Terebinthi & Salium, in Oleo a foecibus per destillationem liberato & calefacto, Oleoque Vitrioli & Mercurio, ac Metallis liquefactis, & siqui sint alii, qui tam Fluidi sunt ut in vasis agitati motum impressum diutius conservent, effusique liberrime in guttas decurrendo resolvantur, nullus dubito quin regula allata satis accurate obtineat:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 102:14)
Quare cum Globus aqueus in aere movendo resistentiam patiatur qua motus sui pars 1/3261, interea dum longitudinem semidiametri suae describat (ut jam ante ostensum est) tollatur, sitque densitas aeris ad densitatem aquae ut 800 vel 850 ad 1 circiter, consequens est ut haec Regula generaliter obtineat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:1)
Igitur resistentia quasi triplo major est quam pro lege in Corollario primo Propositionis xxxviii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:3)
Unde si velocitas Globi eousque augeatur ut Medium non posset adeo celeriter in spatium illud irruere, quin aliquid vacui a tergo Globi semper relinquatur, resistentia tandem evadet quasi triplo major quam pro Regula generali novissime posita.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:6)
idque aequalibus circiter ab invicem distantiis, ob aequalia temporis intervalla, quibus corpus tremoribus suis singulis singulos pulsus excitat. Q. E. D. Et quanquam corporis tremuli partes eant & redeant secundum plagam aliquam certam & determinatam, tamen pulsus inde per Medium propagati sese dilatabunt ad latera, per Propositionem praecedentem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:11)
Consequitur ex constructione Propositionis sequentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 26:1)
sed ascensus & descensus ille verius fit per circulum, ideoque tempus hac Propositione non nisi quamproxime definitum esse affirmo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 33:2)
Nam stantibus quae in Propositione superiore constructa sunt, si linea quaevis Physica, EF singulis vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus cujusque locis P & S, a vi Elastica quae ipsius ponderi aequetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:1)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)

SEARCH

MENU NAVIGATION