라틴어 문장 검색

Eadem omnia, quae superius de motu corporum circa umbilicos Conicarum Sectionum demonstrata sunt, obtinent ubi Sphaera attrahens, formae & conditionis cujusvis jam descriptae, locatur in umbilico.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 44:2)
Idem si a tetragona basi proficiscatur et ad unum verticem eius lineae dirigantur, erit pyramis quattuor triangulorum per latera, uno tantum tetragono in basi posito, super quam ipsa figura fundata est. Et si a pentagono surgant v lineae, quinque rursus pyramis triangulis continebitur, et si ab exagono, sex triangulis nihilominus;
(보이티우스, De Arithmetica, Liber secundus, De his pyramidis, quae a quadratis vel a ceteris multiangulis proficiscuntur figuris 2:1)
Sit istud L. Datur praeterea Conisectionis umbilicus S. Anguli RPS complementum ad duos rectos fiat angulus RPH, & dabitur positione linea PH, in qua umbilicus alter H locatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 49:7)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)
Nam si ternarium triangulum quaternario, vel quaternarium tetragonum quinario, vel quinarium pentagonum senario exagono, vel senarium septenario eptagono compares, primo se triangulo, id est sola transeunt unitate.
(보이티우스, De Arithmetica, Liber secundus, Pertinens ad figuratorum numerorum descriptionem speculatio. 1:2)
Si huic igitur triangulo per tres angulos erigantur lineae et ad unum punctum convertantur, quod est d, ita ut d punctum non sit in plano, sed pendens, illae scilicet lineae ad ipsum erectae verticem et quodammodo cacumen d facient et erit basis a b c unum triangulum, per latera vero tria triangula, id est unum triangulum a d b, aliud vero b d c, tertium c d a.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:6)
17 Ad umbilicos vero prominentes, ne manu ferroque utendum sit, ante temptandum est, ut abstineatur, alvus his ducatur, inponatur super umbilicum id, quod ex his constat:
(켈수스, 의학에 관하여, Liber VI, 17장1)
Ad umbilicos uero prominentes, ne manu ferroque utendum sit, ante temptandum est, ut abstineatur, aluus his ducatur, inponatur super umbilicum id, quod ex his constat:
(켈수스, 의학에 관하여, 6권, 17장 1:1)
constituat angulum vsp angulo hsq & angulum vsh angulo psq aequales, triangula svh, spq erunt similia, & propterea vh erit ad pq ut est sh ad sq, id est (ob similia triangula VSP, hsq) ut est VS ad SP seu ab ad pq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 23:3)
Dato umbilico S, describenda sit Trajectoria ABC per puncta duo B, C. Quoniam Trajectoria datur specie, dabitur ratio axis transversi ad distantiam umbilicorum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 16:2)
Sit enim APQ Parabola, S umbilicus ejus, A vertex principalis, P punctum contactus, PO ordinatim applicata ad diametrum principalem, PM tangens diametro principali occurrens in M, & SN linea perpendicularis ab umbilico in tangentem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 16:1)
Est autem ML ad FG (ob similia triangula PLM, PGF) ut PL ad PG, hoc est (ob parallelas Lk, PK, GR) ut pl ad pe, id est (ob similia triangula plm, cpe) ut lm ad ce;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:7)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)

SEARCH

MENU NAVIGATION