라틴어 문장 검색

Per motum illum circularem fit ut partes ab axe recedentes juxta aequatorem ascendere conentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 28:2)
Ideoque materia si fluida sit ascensu suo ad aequatorem diametros adaugebit, axem verò descensu suo ad polos diminuet.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 28:3)
Invenire proportionem axis Planetae ad diametros eidem perpendiculares.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 30:1)
Unde si APBQ figuram Terrae designet revolutione Ellipseos circa axem minorem PQ genitam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:3)
Corollario secundo, Lib. I.) computationem ineundo, invenio quod si Terra constaret ex uniformi materia, motuque omni privaretur, & esset ejus axis PQ ad diametrum AB ut 100 ad 101:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:7)
Et eodem argumento gravitas in loco A in Sphaeroidem, convolutione Ellipseos APBQ circa axem AB descriptam, est ad gravitatem in eodem loco A in Sphaeram centro C radio AC descriptam, ut 125-2/15 ad 126-2/15.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 32:9)
Puncta AEquinoctialia regredi, & axem Terrae singulis revolutionibus nutando bis inclinari in Eclipticam & bis redire ad positionem priorem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 2:1)
Exponatur vis maxima EL in Octantibus per aream FK × Kk rectangulo ½SP × Pp aequalem.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:20)
Et velocitas, quam vis maxima tempore quovis CP generare posset, erit ad velocitatem quam vis omnis minor EL eodem tempore generat ut rectangulum ½SP × CP ad aream KCGF:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:21)
tempore autem toto CPA, velocitates genitae erunt ad invicem ut rectangulum ½SP × CA & triangulum SCG, sive ut arcus quadrantalis CA ad radium SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:22)
Quoniam figura orbis Lunaris ignoratur, hujus vice assumamus Ellipsin DBCA, in cujus centro S Terra collocetur, & cujus axis major DC Quadraturis, minor AB Syzygiis interjaceat.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:1)
Est & AT ad PD ut AZ ad PH, & propterea PH rectangulo PD × AZ proportionalis, & conjunctis rationibus, PK × PH est ut contentum Kk × PD × AZ, & PK × PH × AZ ut Kk × PD × AZ qu.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 54:8)
At area PDdM, ubi Luna versatur in Syzygiis, est rectangulum sub arcu PM & radio MT;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:12)
& summa omnium huic aequalium arearum, quo tempore Luna circulum describit, est rectangulum sub circumferentia tota & radio circuli;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:13)
Nam si PF tangat circulum in P, & producta occurrat TN in F, & pf tangat Ellipsin in p & producta occurrat eidem TN in f, conveniant autem hae Tangentes in axe TQ ad Y;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:1)

SEARCH

MENU NAVIGATION