라틴어 문장 검색

Bisecetur AB in C, & punctum C repraesentabit infimum Cycloidis punctum, & erit CD ut vis a gravitate oriunda, qua corpus in D secundum Tangentem Cycloidis urgetur, eamque habebit rationem ad longitudinem Penduli quam habet vis in D ad vim gravitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:2)
& si in DE capiatur DK in ea ratione ad longitudinem penduli quam habet resistentia ad gravitatem, erit DK exponens resistentiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:4)
Nam si corpus, in Medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB descripti ordinatim applicata DE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:2)
adeoque velocitates in singulis ipsius Ba punctis, sint quam proxime ad velocitates in punctis correspondentibus longitudinis BA, ut est Ba ad BA;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:4)
7/11Aa ad longitudinem penduli ut corporis oscillantis resistentia in O ad ejusdem gravitatem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:12)
Est igitur rectangulum sub ½Ba & Aa aequale rectangulo sub 2/3Ba & OV, adeoque OV aequalis ¾Aa, & propterea corporis oscillantis resistentia in O ad ipsius gravitatem ut ¾Aa ad longitudinem Penduli.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:2)
Et area illa, si maneat longitudo aB, augetur vel diminuitur in ratione ordinatim applicatarum DK;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:3)
hoc est in ratione resistentiae, adeoque est ut longitudo aB & resistentia conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:4)
Eadem erit lex & ratio resistentiae pro velocitate, quae est differentiae illius pro longitudine arcus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 54:4)
Ideoque si, pendulo inaequales arcus successive describente, inveniri potest ratio incrementi ac decrementi resistentiae hujus pro longitudine arcus descripti, habebitur etiam ratio incrementi ac decrementi resistentiae pro velocitate majore vel minore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 55:2)
Solidum quod figurae hujus revolutione circa axem AB facta describitur, in Medio raro & Elastico ab A versus B velocissime movendo, minus resistetur quam aliud quodvis eadem longitudine & latitudine descriptum Solidum circulare.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:3)
In CR capiatur CT longitudinis cujusvis, & erigatur perpendiculum TV abscindens aream Hyperbolicam PCTV, & sit CZ latus hujus areae applicatae ad rectam PC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:4)
si Ct sit longitudo tempore quam minimo a cylindro descripta, erit motus eo tempore amissus ad motum totum cylindri ut 2Ct × CS ad AI × CR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 38:7)
erit motus, quem globus describendo longitudinem L amittit, ad motum totum globi, ut Ct × CS ad 2/3AI × CR, sive ut Ct ad CR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 38:10)
haec describendo longitudinem quamvis CZ amittent majorem motus sui partem, quam quae sit ad motum suum totum ut CT ad CR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 42:3)

SEARCH

MENU NAVIGATION