라틴어 문장 검색

Eodem argumento in fine temporis ejusdem reperietur alicubi in linea CD, & idcirco in utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:5)
lineae concursu D reperiri necesse est.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 13:6)
O & intervallorum OK, OL majore OL describatur circulus occurrens filo MA in D:
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:3)
Quoniam nihil refert utrum filorum puncta K, L, D affixa sint vel non affixa ad planum rotae, pondera idem valebunt ac si suspenderentur a punctis K & L vel D & L. Ponderis autem A exponatur vis tota per lineam AD, & haec resolvetur in vires AC, CD, quarum AC trahendo radium OD directe a centro nihil valet ad movendam rotam;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 17:5)
& si vis ponderis p deorsum tendens, exponatur per lineam pH, resolvi potest haec in vires pN, HN.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:3)
Si filo pN perpendiculare esset planum aliquod pQ secans planum alterum pG in linea ad horizontem parallela;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 18:4)
utpote cum vis qua pondus p urget planum pQ sit ad vim, qua idem vel gravitate sua vel ictu mallei impellitur secundum lineam pH in plano, ut pN ad pH; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 19:3)
motus autem paralleli, propterea quod corpora agant in se invicem secundum lineam huic plano perpendicularem, retinendi sunt iidem post reflexionem atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 24:5)
Nam si puncta duo progrediantur uniformi cum motu in lineis rectis & distantia eorum dividatur in ratione data, punctum dividens vel quiescet vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:1)
similiter & commune centrum horum duorum & tertii cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab eo dividitur distantia centri communis corporum duorum & centri corporis tertii in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:4)
Eodem modo & commune centrum horum trium & quarti cujusvis vel quiescit vel progreditur uniformiter in linea recta, propterea quod ab eo dividitur distantia inter centrum commune trium & centrum quarti in data ratione, & sic in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:5)
inter se & a viribus acceleratricibus aequalibus secundum lineas parallelas urgeantur;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 33:2)
Nam vires illae aequaliter (pro quantitatibus movendorum corporum) & secundum lineas parallelas agendo, corpora omnia aequaliter (quoad velocitatem) movebunt (per Legem 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 34:1)
Pendeant corpora A, B filis parallelis AC, BD a centris C, D. His centris & intervallis describantur semicirculi EAF, GBH radijs CA, DB bisecti.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:8)
in corporibus tam inaequalibus quam aequalibus, & faciendo ut corpora de intervallis amplissimis, puta pedum octo, duodecim vel sexdecim concurrerent, reperi semper sine errore trium digitorum in mensuris, ubi corpora sibi mutuo directe occurrebant quod in partes contrarias mutatio motus erat corpori utriq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:26)

SEARCH

MENU NAVIGATION