라틴어 문장 검색

Experiare igitur licet, quantum nobis in hoc studio longis tractus otiis labor adiecerit, an rerum subtilium fugas exercitatae mentis velocitas conprehendat, utrum ieiunae macies orationis ad ea, quae sunt caligantibus inpedita sententiis expedienda sufficiat.
(보이티우스, De Arithmetica, Prefationes, Praefatio Boetii 3:1)
Et e contrario ea semper posteriora sunt, quae secum aliud quodlibet inferunt, ea prioria, quae cum dicta sunt, nihil secum de posterioribus trahunt, ut in eodem quoque homine.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:24)
Hae autem sunt, quibus numerus constat, par atque inpar quae divina, quadam potentia, cum disparia sint contrariaque, ex una tamen gentirua profluunt, et in unam composititionem modulationemque iunguntur.
(보이티우스, De Arithmetica, Liber primus, De substantia numeri 1:10)
par numerus est, qui sub eadem divisione potest in maxima parvissimaque dividi, maxima spatio, parvissima quantitate secundum duorum istorum generum contrarias passiones.
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:2)
secundum duorum generum contrarias passiones, huiusmodi est:
(보이티우스, De Arithmetica, Liber primus, Definito numeri paris et inparis secundum Pythagoram. 1:10)
est enim una, quae dicitur pariter par, alia vero pariter inpar, tertia inpariter par. Et contraria quidem locumque obtinentia summitatum videntur esse pariter par et pariter inpar.
(보이티우스, De Arithmetica, Liber primus, Divisio paris numeri 1:2)
Pariter autem inpar numerus est, qui et ipse quidem paritatis naturam substantiamque sortitus est, sed in contraria divisione naturae numeri pariter paris obponitur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:1)
Accidit autem his quod omnes partes contrarie denominantas habent, quam sunt tantitates ipsarum partium, quae denominantur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 1:5)
Contrariae vero esse dicuntur hae species numerorum, id est pariter par et pariter inpar, quod in numero pariter inpari sola divisionem recipit maior extremitas, in illo vero solus minor terminus sectione solutus est, et quod in forma pariter paris numeri ab extremitatibus incipienti et usque ad media progredienti, quod continentur sub extremis terminis, idem est illi, quod continentur sub intra se positis summulis atque hoc idem usquedum ad duas medietates fuerit ventum in dispositionibus scilicet paribus;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:10)
Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
Contrarie vero denominantur, ut tertia pars viij, octava vero iij. Vicesima autem quarta j quae denominationes cum pares sint, inveniuntur inpares quantitates, et cum sint pares summae, sunt inpares denominationes.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:13)
Qua vero ratione tales numeros invenire possimus, si quis nobis eosdem proponat et imperet agnoscere, utrum aliqua mensura commensurabiles sint, an certe sola unitas utrosque metiatur, repperiendi ars talis est. Datis enim duobus numeris inaequalibus, auferre de maiore minorem oportebit, et qui relictus fuerit, si maior est, auferre ex eo rursus minorem, si vero minor fuerit, eum ex reliquo maiore detrahere atque hoc eo usque faciendum, quoad unitas ultima vicem retractionis inpediat, aut aliquis numerus, inpar necessario, si utrique numeri inpares proponantur;
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:1)
Inaequalis vero quantitatis gemina divisio est. Secatur enim quod inaequale est in maius atque minus, quae contraria sibimet denominatione funguntur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:1)
Namque maius minore maius est et minus maiore minus est, et utraque non eisdem vocabulis, quemadmodum secundum aequalitatem dictum est, sed diversis distantibusque signata sunt, ad modum discentis scilicet vel docentis vel caedentis vel vapulantis vel quaecunque ad aliquid relata aliter denominatis contrariis comparantur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 2:2)
huic oppositum contrariumque esse oportebit qui neque longitudinem latitudini neque haec duo profunditati gerat aequalia, sed cunctis inaequalibus, quamvis solida sit figura, ab aequalitate cybi longissime distare videatur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:2)

SEARCH

MENU NAVIGATION