라틴어 문장 검색

At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)
Sin vero his sequentes novem adiecero, fiet mihi quattuordecim numerorum forma pyramidis, quae per latera tribus unitatibus concludatur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:8)
In his quoque omnibus pyramidis tot erunt unitates per latera, quantae in se numerorum adgregatae fuerint quantitates.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:10)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
Hos ergo duos ex ipsius latere si multiplices aequaliter, cybi forma nascetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:5)
Et xvj, qui est ex quattuor, si quater augescat, lxiiij cybus pari laterum demensione crassabitur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:10)
Omnis enim tetragonus una quidem superficies est quattuor angulorum, totidemque laterum.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:16)
Ergo si unitate tantum discrepent, qui multiplicantur, descripti superius numeri protenduntur, sin vero aliquo numero, ut ter vij vel ter v vel aliquo modo alio, et non eorum latera sola discrepent unitate, non vocabitur hic numerus parte altera longior, sed antelongior.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:1)
Merito ergo dicentur hi numeri parte altera longiores, quod eorum latera unius tantum sese adiecta numerositate praecedunt.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:6)
Nam quemadmodum unus a duobus uno tantum alter est, sic horum latera a se tantum uno sunt altera et una tantum differunt unitate.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:3)
Ipsorum vero cyborum quanticunque fuerint ita ducti, ut a quo numero cybicae quantitatis latus coeperit, in eundem altitudinis extremitas terminetur, numerus ille cyclicus vel sphericus appellatur;
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:1)
Est enim parte altera longior numerus, quicunque unitate tantum lateri crescit adiecta, ut sunt sex, scilicet bis tres, vel xij tres quater et consimiles.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:10)
Anteriore vero parte longior est, qui sub duobus numeris huiusmodi continetur, quorum latera non possidet unitatis differentia, sed aliorum quorumcunque numerorum, ut ter quinque vel ter sex vel quater septem.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:11)
Omnis vero tetragonus, si ei proprium latus addatur, vel eodem rursus dematur, parte altera longior fit. Namque iiij tetragono si quis duo iungat vel duo detrahat, vj addendo perficiet et ij detrahendo.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:1)
Hoc autem idcirco evenit, quod singula latera singulorum tetragonorum efficiunt senariam medietatem.
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:12)

SEARCH

MENU NAVIGATION