라틴어 문장 검색

Igitur si Fluidum illud in vase non rigido claudatur, & undique non prematur aequaliter, cedet idem pressioni fortiori, per Definitionem Fluiditatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 11:2)
An vero Fluida Elastica ex particulis se mutuo fugantibus constent, Quaestio Physica est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 46:18)
Verum tamen nisi contractiones & dilatationes sint valde intensae, non errabit sensibiliter, ideoque pro Physice accurata haberi potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 36:5)
E, F, G puncta tria Physica Medii quiescentis, in recta AC ad aequales ab invicem distantias sita;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:4)
& EF, FG lineolas Physicas seu Medii partes lineares punctis illis interjectas, & successive translatas in loca [epsilon][phi], [phi][gamma] & ef, fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:7)
sic ut completo tempore quovis PH vel PHSh, si demittatur ad PS perpendiculum HL vel hl, & capiatur Ee aequalis PL vel Pl, punctum Physicum E reperiatur in [epsilon].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:11)
Probandum est quod singula Medii puncta Physica tali motu agitari debeant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:13)
Unde si OP × BC ÷ Z dicatur V, erit expansio partis EG, punctive Physici F, ad ejus expansionem mediocrem in itu, ut V - IM ad V, in reditu ut V + im ad V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:10)
in reditu, ut 1 ÷ {V + im} ad 1 ÷ V. Et eodem argumento vires Elasticae punctorum Physicorum E & G in itu, sunt ut 1 ÷ {V - HL} & 1 ÷ {V - KN} ad 1 ÷ V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:12)
Sed differentia illa (id est excessus vis Elasticae puncti [epsilon] supra vim elasticam puncti [gamma],) est vis qua interjecta Medii lineola Physica [epsilon][gamma] acceleratur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:4)
& propterea vis acceleratrix lineolae Physicae [epsilon][gamma] est ut ipsius distantia a Medio vibrationis loco [Omega].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:5)
Nam lineola Physica [epsilon][gamma], quamprimum ad locum suum primum redierit, quiescet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 47:3)
Nam stantibus quae in Propositione superiore constructa sunt, si linea quaevis Physica, EF singulis vibrationibus describendo spatium PS, urgeatur in extremis itus & reditus cujusque locis P & S, a vi Elastica quae ipsius ponderi aequetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:1)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
Nam si vorticis pars aliqua exigua, cujus particulae seu puncta physica datum servant situm inter se, congelari supponatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:1)

SEARCH

MENU NAVIGATION