라틴어 문장 검색

consideranda erit figura, quam Luna in Ellipsi illa revolvendo describit in hoc plano, hoc est Figura Cpa, cujus puncta singula p inveniuntur capiendo punctum quodvis P in Ellipsi, quod locum Lunae representet, & ducendo Sp aequalem SP, ea lege ut angulus PSp aequalis sit motui apparenti Solis à tempore Quadraturae C confecto;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 41:3)
est ad vim qua Luna in circulo circa Terram quiescentem tempore suo periodico revolvi posset, ut 3IT ad Radium circuli multiplicatum per numerum 178,725, sive ut IT ad Radium multiplicatum per 59,575.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:13)
Unde si circuli totius circumferentia NAn dividatur in particulas aequales Aa, tempus quo Sol percurrat particulam Aa, si circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032 ATq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:11)
Si annulus, Terra omni reliqua sublata, solus in orbe Terrae motu annuo circa Solem ferretur, & interea circa axem suum, ad planum Eclipticae in angulo graduum 23½ inclinatum, motu diurno revolveretur:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 63:1)
& propterea si Luna spatio diei siderei juxta superficiem Terrae revolveretur, motus annuus Nodorum foret ad 20 gr. 11'. 46".
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 3:10)
si annulus iste Terram secundum aequatorem cingeret, & uterque simul circa diametrum annuli revolveretur, motus annuli esset ad motum globi interioris (per hujus Lem. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 5:6)
Ideoque Cometae maxima ex parte supra Planetas versantes, & eo nomine orbes axibus majoribus describentes, tardius revolventur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 24:3)
Et propterea, per Corol. 7. Prop. XVI. Lib. I. velocitas Cometae omnis erit semper ad velocitatem Planetae cujusvis circa Solem in circulo revolventis, in dimidiata ratione duplicatae distantiae Cometae à centro Solis ad distantiam Planetae à centro Solis quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 26:2)
Ponamus radium orbis magni, seu Ellipseos in qua Terra revolvitur semidiametrum transversam, esse partium 100000000, & Terra motu suo diurno mediocri describet partes 1720212, & motu horario partes 71675½.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 26:3)
Nam Cometa quo tempore describat arcum Parabolicum AC, eodem tempore ea cum velocitate quam habet in altitudine SP (per Lemma novissimum) describet chordam AC, adeoque eodem tempore in circulo cujus semidiameter esset SP revolvendo, describeret arcum cujus longitudo esset ad arcus Parabolici chordam AC in dimidiata ratione unius ad duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:1)
Orbem jam descriptum spectanti & reliqua Cometae hujus Phaenomena in animo revolventi haud difficulter constabit quod corpora Cometarum sunt solida, compacta, fixa ac durabilia ad instar corporum Planetarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 43:1)
Et quemadmodum è Planetis non caudatis, minores esse solent qui in orbibus minoribus & Soli proprioribus gyrantur, sie etiam Cometas, qui in Periheliis suis ad Solem propius accedunt, ut plurimum minores esse & in orbibus minoribus revolvi rationi consentaneum videtur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 54:2)
Lunae descendit imago carminibus deducta meis, trepidusque furentes flectere Phoebus equos revoluto cogitur orbe.
(페트로니우스, 사티리콘, TITI PETRONI ARBITRI SATYRICON 134:24)
. . | Iam reliqui revolutam passimque per totum effusam pavimentum collegerant fabam, orbatique, ut existimo, duce redierant in templum, cum ego praeda simul atque [hac] vindicta gaudens post lectum occisum anserem mitto vulnusque cruris haud altum aceto diluo.
(페트로니우스, 사티리콘, TITI PETRONI ARBITRI SATYRICON 136:13)
Adversus altos Sisyphus montes agit Saxum labore summo, quod de vertice Sudore semper irrito revolvitur, Ostendit hominum sine fine esse miserias.
(파이드루스, 이솝 우화, Appendix: Fabulae Novae, Auctor: Sensum aestimandum esse non verba.2)

SEARCH

MENU NAVIGATION