라틴어 문장 검색

etiam ut sunt eorundem angulorum secantes ita esse tempora revolutionum omnium inter circulos eosdem duos quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:7)
Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:2)
Centro S Asymptotis SA, SX describatur Hyperbola quaevis, quae secet perpendicula AH, BI, CK, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:13)
Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quae parallela sit rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut GR cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:1)
& his rectis circa axem revolutis concipe orbes in annulos innumeros secari;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 17:3)
Quinetiam si in praefata Ellipseos revolutione punctum quodvis N describat circulum NM, secantem parallelos Ff, Dd in locis quibusvis R, T, & aequatorem AE in S;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 18:16)
Jungantur PL, MP, & producantur eae ad m & l, ubi secent planum Eclipticae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 51:2)
Hinc si a dati arcus quam minimi PM terminis P & M ad lineam Quadraturas jungentem Qq demittantur perpendicula PK, Mk, eademque producantur donec secent lineam Nodorum Nn in D & d;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 54:2)
& agatur AE vel AF secans perpendiculum DG in G;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:14)
Et si Cometa B moveatur in arcu CBA, & agatur [xi]B secans AC in E:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 44:4)
Jungatur enim EO secans arcum Parabolicum ABC in Y, & erit area curvilinea AEY ad aream curvilineam ACY ut AE ad AC quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 46:1)
Tum per puncta A, B, C, duc circumferentiam circuli, eamque biseca in i, ut & chordam AC in I. Age occultam Si secantem AC in [lambda], & comple parallelogrammum iI[lambda][mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:4)
Jungatur MN secans IO in O. Constituatur rectangulum iI[lambda][mu] ut prius.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 7:2)
Deinde si per G, g, [gamma] ducatur circumferentia circuli Gg[gamma] secans rectam [tau]C in Z:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:2)
Et si in AC, ac, [alpha][kappa] capiantur AF, af, [alpha][phi] ipsis CG, cg, [kappa][gamma] respectivè aequales, & per puncta F, f, [phi] ducatur circumferentia circuli Ff[phi] secans rectam AT in X;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:4)

SEARCH

MENU NAVIGATION