라틴어 문장 검색

CV in D & E. Age tum rectam CNIX secantem circulos KE, VY in N & X, tum rectam CKY occurrentem circulo VXY in Y. Sint autem puncta I & K sibi invicem vicinissima, & pergat corpus ab V per I, T & K ad k; sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 10:4)
Sed & angulus KIN, in quo Trajectoria alibi secat lineam illam IC, ex data corporis altitudine IC expedite invenitur, nimirum capiendo sinum ejus ad radium ut KN ad IK, id est ut Z ad latus quadratum areae ABFD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 12:2)
Centro C intervallo Cn vel Ck describi intelligetur circulus secans lineas mr, mn productas in s & t, & erit rectangulum mn × mt aequale rectangulo mk × ms, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:20)
Centro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotae perimetrum Bp in o & viam curvilineam AP in m, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:9)
V & intervallo Vo describatur circulus secans VP productam in q.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:10)
Tempus autem, quo corpus describit lineolam Tt, est ut lineolae hujus longitudo (id est ut secans anguli tTC) directe, & velocitas inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:8)
adeo ex dato tempore detur, dabitur Op positione, & inde dabitur communis ejus & Ellipseos intersectio p, una cum angulo OPp, in quo Trajectoriae vestigium APp secat lineam OP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 59:7)
Sit ACBD Sphaera, S centrum ejus, P corpusculum attractum, PASB axis Sphaerae per centrum corpusculi transiens, EF, ef plana duo quibus Sphaera secatur, huic axi perpendicularia, & hinc inde aequaliter distantia a centro Sphaerae;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 49:2)
sequentis) & centro P circuli duo EF, ef, secantes priorem in E, e, lineamq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 62:2)
Nam si linea Pe secet arcum EF in q;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 63:1)
Nam si primo consideremus vim superficiei Sphaericae FE, quae convolutione arcus FE generatur, & linea de ubivis secatur in r;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:1)
Superficie Sphaerica EFG centro P descripta secetur DB in F, ac distinguatur segmentum in partes BREFGS, FEDG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:2)
Jungatur AB, & secetur ea in G ut sit AG ad BG ut particula B ad particulam A;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 15:4)
Circulo quolibet RFS ad hunc axem perpendiculari secetur hoc solidum, & in ejus diametro FS, in plano aliquo PALKB per axem transeunte, capiatur (per Prop. XC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 33:2)
Sit NKRM Sectio Conica cujus ordinatim applicata ER, ipsi PE perpendicularis, aequetur semper longitudini PD, quae ducitur ad punctum illud D, in quo applicata ista Sphaeroidem secat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 36:3)

SEARCH

MENU NAVIGATION