라틴어 문장 검색

Hic enim aequa semper proportio custoditur, numeri quantitas multitudoque neglegitur, contrarie quam in arithmetica medietate, ut sunt j ij iiij viij xvj xxxij lxiiij vel in tripla proportione j iij viiij xxvij lxxxj vel si quadrupla vel si quincupla vel si in quamlibet multiplicitatem numerorum sit constituta distensio.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:2)
In his enim, quotlibet terminos sumpseris, explebunt geometricam medietatem, quemadmodum enim prior ad sequentem est, ita sequens ad alium, et rursus, si permixte facias, idem erit.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:3)
Si enim ponantur tres termini ij iiij et viij, quemadmodum sunt viij ad iiij ita quattuor ad duo. Atque hoc si convertas, quemadmodum sunt duo ad quattuor, ita erunt quattuor ad viij.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:4)
Vel si in quattuor terminis, ut sunt ij iiij viij xvj, quemadmodum est primus ad tertium, id est ij ad viij, sic erit secundus ad quartum, id est iiij ad xvj. Utraque enim proportio quadrupla est. Et conversim quemadmodum quartus est ad secundum, ita tertius notatur ad primum.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 4:1)
Est etiam aliud proprium, quod omnis ad minorem maior terminus comparatus ipsum minorem retinet differentiam.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 9:2)
Termini dupli
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 13:1)
Termini tripli
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 17:1)
Termini quadrupli
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 21:1)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Quarta vero est proprietas huiusce medietatis, quod vel in maioribus vel in minoribus terminis aequales semper proportiones sunt.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:6)
Termini dupli       Termini tripli
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 5:1)
In illa enim in minoribus terminis maior erat proportio, in maioribus minor.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:2)
In hac vero in maioribus quidem terminis maior est proportio, in minoribus vero minor.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:3)
Iuste igitur medietas quaedam geometrica proprieque esse proportionalitas iudicatur, scilicet inter eam, ubi in maioribus terminis minor est proportio et in minoribus maior, et inter eam, ubi in maioribus maior est, in minoribus minor.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:6)

SEARCH

MENU NAVIGATION