라틴어 문장 검색

Si vero fuerint duae medietates iunctae, ipsoae utraeque aequales erunt super se terminis constitutis, ut est in hoc ordine ij vj x xiij.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:16)
Atque hoc in numerosioribus terminis initio sumpto a mediis evenit usquedum ad extrema veniatur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:18)
Hic autem talis est, qui dividitur in aequas partes, cuiusque pars in alias aequas dividi potest, etiam aliquando partes partium dividuntur, sed non usque ad unitatem progreditur aequalis illa disiunctio, ut sunt xxiiij et xxviij.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:2)
Sunt etiam quidam alii numeri, quorum partes alias recipiunt divisiones, sed ipsa divisio ad unitatem usque non pervenit.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:4)
Et rurus xxviij et xij si iungas, faciunt xl, quorum xx medietas medius eorum terminus invenitur.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:3)
medius vero eorum terminus, id est xxiiij si multiplicetur, eosdem rursus dlxxvj procreabit.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:3)
et rurus si xxiiij in xcvj multiplicentur, faciunt mmccciiij, quorum medius terminus, id est xlviij, si in semet ipsum duactur, idem mmcciiij procreantur.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:4)
Ubi autem termini duo duas medietates includunt, quod fit multiplicatis extremitatibus, hoc idem redditur in alterutram summam medietatibus ductis.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:5)
Inpar quoque numerus, qui a paris numeri natura substantiaque disiunctus est—si quidem ille in gemina aequa dividi potest, hic ne secari queat, unitatis inpedit inverventus—tres habet similiter subdivisiones, quarum una eius pars est is numerus, qui vocatur primus et incompositius, secunda vero, qui est secundus et compositus, et tertia is, qui quadam horum medietate coniunctus est et ab utriusque cognatione aliquid naturaliter trahit, qui est per se quidem secundus et compositus, sed ad alios comparatus primus et incompositus invenitur.
(보이티우스, De Arithmetica, Liber primus, De numero inpari eiusque divisione 1:1)
In his ergo singulis nulla unquam alia pars invenietur, nisi quae ab ipsis denominata est, et ipsa tanum untias, ut supra iam dictum est. In tribus enim una pars sola est, id est tertia, quae a tribus scilicet denominata est, et ipsa terita pars unitas;
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:2)
Dicitur autem primus et incompositus, quod nullus eum alter numerus metiatur praeter solam, quae cunctis mater est, unitatem.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:4)
Metitur autem numerus numerum, quotiens vel semel vel bis vel tertio vel quotienslibet numerus ad numerum comparatus neque deminuta summa neque aucta ad comparati numeri terminum usque pervenerit, ut ij si ad vj compares, binarius numerus senarium tertio metietur.
(보이티우스, De Arithmetica, Liber primus, De prime et incompositio 1:6)
sed a se ipso denominatam partem solam semper in his repperies unitatem, ab alieno vero vocabulo vel unam vel quotlibet alias, quanti fuerint scilicet numeri quibus ille compositis procreatur, ut sunt hi:
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 1:2)
Secundus autem vocatur hic numerus, quoniam non sola unitate metitur sed etiam alio numero, a quo scilicet coniunctus est, neque habet quicquam in se principalis intellegentiae.
(보이티우스, De Arithmetica, Liber primus, De secundo et composito 3:1)
ut sunt viiij ad xxv Nulla hos communis numerorum mensura metitur, nisi forte unitas, quae omnium numerorum mensura communis est. Et hi quidem non habent aequivocas partes.
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:3)

SEARCH

MENU NAVIGATION