라틴어 문장 검색

Si corpora Funependula resistuntur in duplicata ratione velocitatum, differentiae inter tempora oscillationum in Medio resistente ac tempora oscillationum in ejusdem gravitatis specificae Medio non resistente, erunt arcubus oscillando descriptis proportionales, quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 20:1)
resistentia corporis in arcu A, erit ad resistentiam corporis in parte correspondente arcus B, in duplicata ratione velocitatum, id est ut A quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 21:2)
Nam corpora tardescentia paulo minus resistuntur pro ratione velocitatis, & corpora accelerata paulo magis quam quae uniformiter progrediuntur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 23:5)
Pendulis igitur in descensu magis resistit, in ascensu minus quam pro ratione velocitatis, & ex utraque causa tempus producitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 23:8)
Posito quod corpus in Cycloide oscillans resistitur in duplicata ratione velocitatis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 28:1)
erit V - R vis tota qua corpus urgetur in D, adeoque ut incrementum velocitatis in data temporis particula factum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 32:3)
Est autem resistentia R (per Hypothesin) ut quadratum velocitatis, & inde (per Lem. II.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 32:4)
Igitur area PIGR per datorum momentorum subductionem uniformiter decrescente, crescunt area Y in ratione PIGR - Y, & area Z in ratione PIGR - Z. Et propterea si areae Y & Z simul incipiant & sub initio aequales sint, hae per additionem aequalium momentorum pergent esse aequales, & aequalibus itidem momentis subinde decrescentes simul evanescent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:1)
id adeo quia si resistentia Z augeatur, velocitas una cum arcu illo Ca, qui in ascensu corporis describitur, diminuetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 33:3)
Hinc etiam innotescit velocitas in locis singulis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 37:2)
quippe quae est in dimidiata ratione resistentiae, & ipso motus initio aequatur velocitati corporis in eadem Cycloide absque omni resistentia oscillantis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 37:3)
Caeterum ob difficilem calculum quo resistentia & velocitas per hanc Propositionem inveniendae sunt, visum est Propositionem sequentem subjungere, quae & generalior sit & ad usus Philosophicos abunde satis accurata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 38:1)
Describat autem corpus tempore quam minimo spatium Dd, & erectis perpendiculis DE, de circumferentiae occurrentibus in E & e, erunt haec ut velocitates quas corpus in vacuo, descendendo a puncto B, acquireret in locis D & d.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:6)
hae velocitates per perpendicula illa DE, de;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:8)
sitque DF velocitas quam acquirit in D cadendo de B in Medio resistente.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:9)

SEARCH

MENU NAVIGATION