라틴어 문장 검색

Alios ergo si respicias vel qui alios mensi sunt, vel qui ipsi ab aliis metiuntur, invenies omnium simul communem mensuram esse non posse, neque ut omnes quemquam alium simul numerent;
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 6:5)
quosdam autem ex his ab alio posse metiri, ita ut ab uno tantum numerentur;
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 6:6)
Qua vero ratione tales numeros invenire possimus, si quis nobis eosdem proponat et imperet agnoscere, utrum aliqua mensura commensurabiles sint, an certe sola unitas utrosque metiatur, repperiendi ars talis est. Datis enim duobus numeris inaequalibus, auferre de maiore minorem oportebit, et qui relictus fuerit, si maior est, auferre ex eo rursus minorem, si vero minor fuerit, eum ex reliquo maiore detrahere atque hoc eo usque faciendum, quoad unitas ultima vicem retractionis inpediat, aut aliquis numerus, inpar necessario, si utrique numeri inpares proponantur;
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:1)
Si vero ad aliquem numerum, ut superius dictum est, finis deminutionis incurrerit, erit numerus, qui metiatur utrasque summas, atque eundem ipsum, qui remanserit, dicemus utrorumque communem esse mensuram.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:4)
Age enim duos numeros propositos habeamus, quos iubeamur agnoscere, an eos aliqua communis mensura metiatur;
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 2:1)
Habet enim octonarius partem mediam, id est iiij, habet et quartam, id est ij, et octavam, id est j quae cunctae in unum redactae vij colligunt, minorem scilicet summam toto corpore concludentes.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:11)
Si igitur ternarium, id est qui ex coacervatione collectus est, per binarium multiplices, qui est ultimus adgregatus, perfectus sine ulla dubitatione nascetur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:3)
Omne enim aut aequale est aut inaequale, quicquid alterius comparatione metimur.
(보이티우스, De Arithmetica, Liber primus, De relata ad aliquid quantitate. 1:2)
Idem autem dico numerat, quod metitur.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:9)
Si igitur bis solum maiorem numerum minor numerus metiatur, subduplus vocabitur, si vero ter, subtriplus, si quater, subquadruplus et fit per haec in infinitum progressio, additaque eos semper sub praepositione nominabis, ut unus duorum subduplus, trium subtriplus, iiij subquadruplus appelletur et consequenter.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:10)
Si vero quartus ordo tertio comparetur, ut iiij ad iij et eodem ceteros ordine consecteris, sesquitertia comparatio colligetur, ut iiij ad iij vel viij ad vj et xij ad viiij.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:12)
Hoc autem trina rursus imperatione colligitur, eaque resolvendi ars datis quibuslibet tribus terminis inaequalibus quidem sed proportionaliter constitutis, id est ut eandem medius ad primum vim proportionis obtineat, quam qui est extremus, ad medium, in qualibet inaequalitatis ratione vel in multiplicibus, vel in superparticularibus, vel in superpartientibus, vel in his, qui ex his procreantur multiplicibus superparticularibus, vel multiplicibus superpartientibus, eadem atque una ratione indubitata constabit.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:10)
Nascuntur autem tales numeri ex naturalis numeri dispositione, non quemadmodum superiores trianguli, ut ordinatis ad se invicem numeris congregentur, sed uno semper intermisso, qui sequitur, si cum superiore vel superioribus colligatur, ordinatos ex se quadratos efficient.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 1:1)
Unus enim et iij et v viiij colligunt.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:5)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)

SEARCH

MENU NAVIGATION