라틴어 문장 검색

PHTF recta axi parallela per corpus transiens, & GF, IH rectae a punctis G & I in parallelam illam PHTF perpendiculariter demissae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 55:6)
Et eadem est ratio Globi annulo nudati, qui in regionibus aequatoris vel altior est paulo quam juxta polos, vel constat ex materia paulo densiore.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 72:17)
A puncto P ducatur recta PH Sphaeram tangens in H, & ad axem PAB demissa Normali HI, bisecetur PI in L;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 78:1)
& EF, EG perpendicula in corporis vias AD, DB demissa.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:5)
Hinc si detur densitas Fluidi in duobus locis, puta A & E, colligi potest ejus densitas in alio quovis loco Q. Centro S, Asymptotis rectangulis SQ, SX describatur Hyperbola secans perpendicula AH, EM, QT in a, e, q, ut & perpendicula HX, MY, TZ ad asymptoton SX demissa in h, m, & t.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:2)
ut & perpendicula ad Asymptoton SX demissa Ht, Iu, Kw in h, i, k;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:15)
Hanc operculo nudatam implevi aqua fontana, fecique ut immersa pendula in medio aquae oscillando moverentur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 91:3)
Locum igitur accurate notabam, ad quem deduxeram pendulum, dein pendulo demisso notabam alia tria loca ad quae redibat in fine oscillationis primae, secundae ac tertiae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:9)
Et demissis perpendiculis IM, KN vel im, kn;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:2)
Patet hoc per Schol. Prop. IV. Lib. I. Cum autem perpendiculum Kd in SP demissum sit ipsius EL pars tertia, & ipsius SP seu ML in octantibus pars dimidia, vis EL in Octantibus, ubi maxima est, superabit vim ML in ratione 3 ad 2, adeoque erit ad vim illam, qua Luna tempore suo periodico circa Terram quiescentem revolvi posset, ut 100 ad 2/3 × 17872½ seu 11915, & tempore CS velocitatem generare deberet quae esset pars 100/11915 velocitatis Lunaris, tempore autem CPA velocitatem majorem generaret in ratione CA ad CS seu SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:19)
perpendicula demissa in lineas ST, Qq;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:3)
Pp perpendiculum demissum in planum Eclipticae;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 50:4)
Designet Qpmaq Ellipsim, axe majore Qq, minore ab descriptam, QAq circulum circumscriptum, T Terram in utriusque centro communi, S Solem, p Lunam in Ellipsi moventem, & pm arcum quem data temporis particula quam minima describit, N & n Nodos linea Nn junctos, pK & mk perpendicula in axem Qq demissa & hinc inde producta, donec occurrant circulo in P & M, & lineae Nodorum in D & d.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 4:1)
& (perpendiculo aY in Nn demisso) si in AZ capiatur dZ, ejus longitudinis ut sit rectangulum dZ in ZY ad Sectoris particulam ATa ut AZq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:16)
& perpendicula pK, Mk in QT demissa & utrinque producta occurrant TF in H & h:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 24:3)

SEARCH

MENU NAVIGATION