라틴어 문장 검색

Hoc pacto vis LM reducetur semper ad mediocrem suam quantitatem SP, ut & vis SM ad mediocrem suam quantitatem 3PK.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:5)
Igitur in sequentibus, siquando facili rerum imaginationi consulens, dixero quantitates quam minimas, vel evanescentes vel ultimas, cave intelligas quantitates magnitudine determinatas, sed cogita semper diminuendas sine limite.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 60:8)
Quoniam Vorticis partes interiores ob majorem suam velocitatem atterunt & urgent exteriores, motumque ipsis ea actione perpetuò communicant, & exteriores illi eandem motus quantitatem in alios adhuc exteriores simul transferunt, eaque actione servant quantitatem motus sui planè invariatam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:2)
Quare pronuntiandum est, nec ulla trepidatione dubitandum, quod quemadmodum per se constantis quantitatis unitas principium et elementum est, ita et ad aliquid relatae quantitatis aequalitas mater est. Demonstravimus enim, quod hinc et eius procreatio prima foret et in eam rursus postrema solutio.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 5:2)
Igitur quantitas aquae, cujus descensum Globus dato tempore impedit, est ad quantitatem aquae quae, si Globus tolleretur, eodem tempore descenderet, ut basis Cylindri circa Globum descripti ad orificium canalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 56:16)
Horum igitur si primum compares primo, dupli quantitas invenitur, quae est prima multiplicitatis species, si vero secundum secundo hemioliae quantitatis habitudo producitur, si tertium tertio sesquitertia proportio procreatur, si quartum quarto, sesquiquarta, et si quintum quinto, sesquiquinta, et hinc superparticularium normam in quamvis longissimum spatium progrediens integram inoffensamque repperies, ita ut in prima dupli proportione unitatis solius sit differentia, duo namque ab uno sola semper discrepant unitate.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:1)
Ac denique si in operatione prima, secunda ac tertia, quantitates R, r & [rho] designent Latera recta Trajectoriae, & quantitates 1 ÷ L, 1 ÷ l, 1 ÷ [lambda] ejusdem Latera transversa respectivè:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:6)
Obtinet autem, quae illi quoque recipiunt, quod quaedam partes eius respondent denominanturque secundum genus suum ad propriam quantitatem, ad similitudinem scilicet pariter paris numeri, aliae vero partes contrarium denominationem sumunt propriae quantitatis, ad pariter inparis scilicet formam.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:10)
Qui sicut multimodae aetatis vicaria facie fluctuabat, sic ejus staturam ancipitem, nunc quantitas minor humilius dehumabat, nunc aequilibratae mediocritatis libramina, staturae ampliabant inopiam, nunc audaci proceritate quantitatis, giganteis contendebat excessibus.
(ALANUS DE INSULIS, LIBER DE PLANCTU NATURAE 68:3)
Nam si partes aliquae plus gravitarent, aliae minus, quàm pro quantitate materiae, Planeta totus, pro genere partium quibus maximè abundet, gravitaret magis vel minus quàm pro quantitate materiae totius.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 22:2)
Si quantitates duae quarum data est differentia augeantur in infinitum, dabitur harum ultima ratio, nimirum ratio aequalitatis, nec tamen ideo dabuntur quantitates ultimae seu maximae quarum ista est ratio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 60:7)
et haec quoque prima minoris quantitatis species est. Hic autem numerus huiusmodi est, qui in alterius comparatione productus plus quam semel maioris numerat summam, sua scilicet quantitate cum eo aequaliter inchoans aequaliterque determinans.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:8)
Quia sicut in his quae ex lege credi debent, quae tamen pro se rationem non habent, quaerere rationem stultum est, quia qui hoc facit, quaerit quod impossibile est inveniri, - et eis nolle credere sine ratione haereticum est, sic in his quae non sunt manifesta de se, quae tamen pro se rationem habent, eis velle credere sine ratione philosophicum non est, ideo - volentes sententiam christianae fidei de aeternitate mundi et sententiam Aristotelis et quorundam aliorum philosophorum reducere ad concordiam, ut sententia fidei firmiter teneatur quamquam in quibusdam demonstrari non possit, - ne incurramus stultitiam, quaerendo demonstrationem ubi ipsa non est possibilis, ne etiam incurramus haeresim, nolentes credere quod ex fide teneri debet, quia pro se demonstrationem non habet, sicut fuit mos quibusdam philosophis quibus nulla lex posita placuit, quia articuli legis positae pro se non habebant demonstrationem, ut etiam sententia philosophorum salvetur, quantum ratio eorum concludere potest, - nam eorum sententia in nullo contradicit christianae fidei nisi apud non intelligentes:
(Boethius De Dacia, DE MUNDI AETERNITATE, 1 1:1)
Illud autem non minima consideratione dignum est, quod eius omnis pars ab una parte quacunque, quae intra ipsum numerum est, denominatur tantamque summam quantitatis includit, quota pars est alter numerus pariter paris illius, qui eum respondeant, ut quota pars una est, tantam habeat altera quantitatem, et quota pars ista est, tanum in priore summa necesse sit multitudinis inveniri.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 13:1)
Hoc est (si ob brevitatem pulsuum supponamus HK & KN indefinite minores esse quantitate V) ut {HL - KN} ÷ VV ad 1 ÷ V, sive ut HL - KN ad V. Quare cum quantitas V detur, differentia virium est ut HL - KN, hoc est (ob proportionales HL - KN ad HK, & OM ad OI vel OP, datasque HK & OP) ut OM;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:1)

SEARCH

MENU NAVIGATION