라틴어 문장 검색

Namque si duos primo respexero, huiusmodi mihi numerus occurrit, qui fit ex bis uno. Cum vero duobus sequentes quattuor iunxero, parte altera longior rursus erit, senarius scilicet, qui fit ex bis tribus.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:12)
Quod si continuatim quis faciat, cunctos huiusmodi numeros in conpetenti ordine procreatos videbit, quam descriptionem scilicet inferior forma demonstrat.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:14)
Ex v igitur et vj paucas huiusmodi formas subscripsimus.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:14)
Anteriore vero parte longior est, qui sub duobus numeris huiusmodi continetur, quorum latera non possidet unitatis differentia, sed aliorum quorumcunque numerorum, ut ter quinque vel ter sex vel quater septem.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:11)
et ad eundem modum usque in finem descriptionis geminatis huiusmodi partibus, sicut ipsa quoque summarum comparatio geminata est, aequas partium progressiones aspicies.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:7)
Quae igitur causa est, huiusmodi terminorum habitudinem, id est arithmeticam, cunctis aliis proportionalitatibus anteponere?
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:4)
Huiusmodi enim proportiones quaeque ad terminorum differentias pertinent, ut paulo post demonstrabitur, in naturalis primum numeri dispositione cognoscimus.
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:6)
Est illi hoc quoque solida proprietate coniunctum, quod quemadmodum sunt omnes termini huiusmodi dispositionis ad se ipsos, ita sunt differentiae ad differentias constitutae.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:1)
Ponamus enim tres terminos huiusmodi iij v vij. Si igitur tres septies augeantur, in xxj numerum cadunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:4)
Recte igitur dictum est, in hac huiusmodi dispositione, quod continetur sub extremitatibus, minus esse illo numero, qui fit ex medietate, tantum, quantum differentiae in se multiplicatae restituunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 5:8)
Quartum vero proprium huiusmodi dispositionis notatur, quod antiquiores quoque habuere notissimum, quod in hac proportionalitate vel medietate in minoribus terminis maiores proportiones, in maioribus minores comparationes necesse est inveniri.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:1)
Habet autem proprium huiusmodi medietas, quod in omni dispositione secundum hanc proportionalitatem terminorum differentiae in eadem proportione contra se sunt, qua fuerint ipsi termini, quorum sunt ipsae differentiae.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 5:1)
Haec autem proportionalitas et in aliis omnibus vel superparticularibus vel superpartientibus invenitur huiusmodi proprietate in omnibusconservata, ut in continua proportione, quod fit sub extremitatibus, si tres fuerint termini, hoc a medietate multiplicata consurgat.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:1)
Namque minorem, id est binarium, uno superat, id est ipsius medietate binarii, a quaternario vero uno relinquitur, quae pars quaternarii quarta est. Recte igitur dictum est, medium terminum in huiusmodi medietate eadem sui parte et minorem vincere et a maiore superari, sed non eisdem partibus vel minoris minorem transgredi vel maioris a maiore transcendi.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:12)
Sint enim eiusmodi armonicae medietatis termini, quorum extremi dupli sint, et rursus alia huiusmodi dispositio, quorum extremi tripli.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:7)

SEARCH

MENU NAVIGATION