라틴어 문장 검색

describe circulos quotcunque, & statue numerum revolutionum inter perimetros duorum quorumvis ex his circulis, in Medio de quo egimus, esse ad numerum revolutionum inter eosdem in Medio proposito, ut Medii propositi densitas mediocris inter hos circulos ad Medii, de quo egimus, densitatem mediocrem inter eosdem quam proxime;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:4)
Namque si lineae SA, SE, SQ sunt continue proportionales, erunt areae EeqQ, EeaA aequales, & inde areae his proportionales YmtZ, XhmY etiam aequales & lineae SX, SY, SZ id est AH, EM, QT continue proportionales, ut oportet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:5)
Nam revolutiones Planetarum circumjovialium circa Jovem, & Mercurii ac Veneris reliquorumque circumsolarium circa Solem sunt Phaenomena ejusdem generis cum revolutione Lunae circa Terram;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 16:1)
Et hinc facile colligitur, quod corporum similes similium figurarum partes temporibus proportionalibus describentium errores, qui viribus aequalibus in partibus istis ad corpora similiter applicatis generantur, & mensurantur a locis figurarum, ad quae corpora temporibus ijsdem proportionalibus absq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 45:2)
& propterea differentiis hisce proportionales areae thlx, xlnz aequales erunt inter se, & densitates St, Sx, Sz, id est AH, DL, FN, continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 36:31)
Tempori huic proportionalis sit ordinatim applicata DN ad rectam CS per punctum D perpendicularis, & ob datam Dd erit rectangulum Dd × DN, hoc est area DNnd, eidem tempori proportionale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:9)
ad axem transversum Ellipseos alterius, ut prima duarum medie proportionalium inter S + P & S ad S + P. Et inverse, axis transversus Ellipseos circa corpus mobile descriptae erit ad axem transversum descriptae circa immobile, ut S + P ad primam duarum medie proportionalium inter S + P & S. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 19:4)

SEARCH

MENU NAVIGATION