라틴어 문장 검색

Sex quoque continent intra se iiij et eorum medietatem, id est ij. Et viiij intra se senarium claudunt et eius mediam partem, id est iiij;
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 5:4)
Si igitur duo prima latera propositae formulae, quae faciunt angulum ab uno ad x et x procedentia, respiciantur et his subteriores ordines comparentur, qui scilicet a iiij angulum incipientes in vicenos terminum ponunt, duplex, id est prima species multiplicitatis ostenditur ita, ut primus primum sola superet unitate, ut duo unum, secundus secundum binario supervadat, ut quaternarius binarium, tertius tertium tribus, ut senarius ternarium, quartus quartum quaternarii numerositate transcendat, ut viij quaternarium, et per eandem cuncti sequentiam sese minoris pluralitate praetereant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:1)
Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Nam cum vj ex binario ternarioque nascantur, tres binarium numerum uno superant, cunctique alii eiusdem modi sunt, ut primo et secundo ordine ad alterutrum multiplicatis terminis procreentur, ita ut quod nascitur ex duobus longilateris altrinsecus positis et bis medio tetragono tetragonus sit;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:11)
nam si duas medietates habuerit, qui illum intra se totum coercet, duplus pro superpartiente componitur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:3)
Nam si eum habeat totum et duas eius quartas, superparticularis necessario repperitur, nam duae quartae medietas est et fit sesqualtera comparatio;
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:5)
At vero quemadmodum singuli procreentur si in infinitum quis curet agnoscere, hic modus est. Habitudo enim superbipartientis, si utrisque terminis duplicetur, semper superbipartiens proportio procreatur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:1)
et hi semper nascentur dispositis in ordinem a binario numero omnibus naturaliter paribus inparibusque terminis, si contra eas omnes a quinario numero inpares comparentur, ut primum primo, secundum secundo, tertium tertio caute et diligenter adponas, ut sit dispositio talis:
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 2:5)
Si vero a duobus paribus omnibus dispositis terminis illi, qui a quinario numero inchoantes quinario numero rursus sese transsiliunt, comparentur, omnes duplices sesqualteros creant, ut est subiecta descriptio,
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 5:1)
Si autem a ternario numero ingressi cunctos naturalis numeri triplices disponamus et eis a denario numero denario sese supergredientes ordine comparemus, omnes triplices sesquitertii in ea terminorum continuatione provenient.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 17:1)
In hoc quoque propter causam superius dictam non erunt duae medietates neque duae quartae neque duae sextae, sed duae tertiae vel duae quintae vel duae septimae ad priorum similem consequentiam.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:2)
Sint enim nobis tres aequales termini, id est tres unitates, vel ter bini vel ter terni vel ter quaterni vel quantos ultra libet ponere.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:5)
Quod enim in unis tribus terminus evenit, idem contingit in ceteris.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:6)
Hoc igitur cum in terminis aequalibus feceris, ex his qui nascentur, duplices erunt, de quibus duplicibus si idem feceris, triplices procreantur et de his quadruplices atque in infinitum omnes formas numeri multiplicis explicabit.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:13)
Iaceant igitur tres termini aequales.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 1:14)

SEARCH

MENU NAVIGATION