라틴어 문장 검색

Nam quae in viiij tertia est, in xxv non est, et quae in xxv quinta est, in novenario non est. Ergo hi per naturam utrique secundi et compositi sunt, comparati vero ad se invicem primi incompositique redduntur, quod utrosque nulla alia mensura metitur, nisi unitas, quae ab utrisque denominata est;
(보이티우스, De Arithmetica, Liber primus, De eo, qui per se secundus et compositus est, ad alium primus et incompositus 1:4)
Metientur autem, si per pares numeros a binario inchoantes positos inter se inpares rata intermissione transsiliant, ut primus duo, secundus iiij, tertius vj quartus viij quintus x, vel si locos suos conduplicent et secundum duplicationem terminos intermittant, ut ternarius qui primus est numerus et unus -- omnis enim primus unus est -- bis locum suum multiplicet faciatque bis unum;
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 5:2)
nisi forte omnium horum procreatrix et mater unitas.
(보이티우스, De Arithmetica, Liber primus, De primi et incompositi et secundi et compositi et ad se quidem secundi et compositi, ad alterum vero primi et incompositi procreatione 6:14)
Ergo si in unum incurrat vicissim ista subtractio, primi contra se necessario numeri dicentur et nulla alia mensura nisi sola unitate coniuncti.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 1:3)
quos si duo rursus septenario dempserim, supersunt v, atque ex his alios duos, iij rursus exuberant, quos alio binario deminutos sola unitas superstes egreditur.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 2:5)
Rursus si ex duobus unum auferam in uno terminus detractionis haerebit, quem duorum illorum numerorum, id est viiij et xxviiij solam neque aliam constat esse mensuram.
(보이티우스, De Arithmetica, Liber primus, De inventione eorum numerorum, qui ad se secundi et compositi sunt, ad alios vero relati primi et incompositi 2:6)
Atque hic quidem, cuius compositae partes totius summam numeri vincunt, superfluus appellatur, deminutus vero ille, cuius eodem modo compositae partes totius termini multitudine superantur, ut viij vel xiiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:10)
Rursus xiiij habent medietatem, id est septenarium, habent septimam, id est ij, habent quartam decimam, id est j quae in unum si collectae sint, denarii numeri summa succrescit, toto scilicet termino minor.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 1:12)
Inter hos autem velut inter inaequales intemperantias medii temperamentum limitis sortitus est ille numerus, qui perfectus dicitur, virtutis scilicet aemulator, qui nec supervacua progressione porrigitur, nec contracta rursus deminutione remittitur, sed medietatis obtinens terminum suis aequus partibus nec crassatur abundantia, nec eget inopia, ut vj vel xxviiij.
(보이티우스, De Arithmetica, Liber primus, Alia partitio paris secundum perfectos, inperfectos et ultra quam perfectos 3:1)
et post unitatem ultimum binarium numerum adgregaveras.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:2)
Sed hic primus et incompositus non est, habet enim generis alterius partem super illam, quae est a se ipsa denominata, quintam decimam scilicet unitatem.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:14)
Semel enim j solam efficit unitatem, quae partibus suis aequalis est potentia solum, ceteris etiam actu atque opere perfectis.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:19)
Recte igitur unitas propria virtute perfecta est, quod et prima est et incomposita et per se ipsam multiplicata sese ipsam conservat.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:20)
Ad primum enim, id est unitatem, ij duplus, iij triplus, iiij quadruplus atque ita in ordinem progredientes omnes texuntur multiplices quantitates.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:5)
Si enim positis in naturali constitutione numeris singulos per suas sequentias pares eligas, omnium ab uno parium atque inparium sese sequentium duplices erunt et huius speculationis terminus deficit.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 2:2)

SEARCH

MENU NAVIGATION