라틴어 문장 검색

Nam si corpus, in Medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB descripti ordinatim applicata DE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:2)
Proindeque rectangulum sub Aa & ½aB est ut aB & resistentia conjunctim, & propterea Aa ut resistentia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 50:5)
Similes igitur erunt correspondentium & similium particularum motus usque ad occursus suos primos, & propterea similes occursus, & similes reflexiones, & subinde (per jam ostensa) similes motus inter se, donec iterum in se mutuo inciderint, & sic deinceps in infinitum. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:14)
Et conjunctis his omnibus rationibus, resistentiae partium correspondentium sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium conjunctim. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:8)
& propterea resistentia corporis D erit ad resistentiam corporis F ut resistentia corporis E ad resistentiam corporis G. Sunto corpora D & F aequivelocia ut & corpora E & G;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 10:10)
Ergo differentia falso assignatur, & propterea nulla est. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 20:13)
Et propterea si particulae Medii quiescerent, & cylindrus ac globus aequali cum velocitate moverentur, foret resistentia globi duplo minor quam resistentia cylindri. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:18)
Producatur CA primo ad S deinde ad R, ut sit AS pars tertia ipsius CA, & CR sit ad CS ut densitas corporis Sphaerici ad densitatem Medii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:2)
Et propterea cum globus describendo longitudinem quam minimam Ct amittat motus sui partem, quae sit ad totum ut Ct ad CR, is describendo longitudinem aliam quamvis CZ, amittet motus sui partem quae sit ad totum ut CT ad CR. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 38:14)
Ergo Fluidum omne quod motu progressivo accelerato fertur, & cujus partes inter se quiescunt, solida quaecunque ejusdem densitatis inclusa, quae sub initio quiescebant, rapit secum, & una moveri cogit. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 68:9)
Ejus pars decima seu differentia inter descensum & ascensum in oscillatione mediocri 2/5 dig.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:7)
idque toties, quoties in particulas non accurate in directum jacentes inciderit. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 4:7)
& propterea pressio non minus propagabitur a lateribus df, eg in spatia NO, KL hinc inde, quam propagatur a superficie fg versus PQ. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:12)
adeoque spatium totum KLON occupabunt. Q. E. D. Hoc experimur in sonis, qui vel domo interposita audiuntur, vel in cubiculum per fenestram admissi sese in omnes cubiculi partes dilatant, inque angulis omnibus audiuntur, non reflexi a parietibus oppositis sed a fenestra directe propagati.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:11)
recedent eaedem versus Medii partes omnes quiescentes, tam laterales KL & NO, quam anteriores PQ, eoque pacto motus omnis, quam primum per foramen BC transiit, dilatari incipiet, & abinde tanquam a principio & centro in partes omnes directe propagari. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 11:5)

SEARCH

MENU NAVIGATION